The 68kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis invitro

The 68kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis invitro Nucleoids were purified from chloroplasts of dividing soybean cells and their polypeptide composition analyzed by SDS-polyacrylamide gel electrophoresis. Of the 15–20 nucleoid-associated polypeptides, several demonstrated DNA binding activity. Upon disruption of the nucleoids with high concentrations of NaCl, a subset of these proteins and the majority of chloroplast DNA were recovered in the supernatant after centrifugation. Removal of the salt by dialysis resulted in formation of nucleoprotein complexes resembling genuine nucleoids. Purification of these structures revealed three major proteins of 68, 35 and 18 kDa. After purification of the 68 kDa protein to homogeneity, this protein was able to compact purified chloroplast DNA into a nucleoid-like structure in a protein concentration-dependent fashion. Addition of the 68 kDa protein to an in vitro chloroplast DNA replication system resulted in complete inhibition of nucleotide incorporation at concentrations above 300 ng of 68 kDa protein per μg of template DNA. These results led to in situ immunofluorescence studies of chloroplasts replicating DNA which suggested that newly synthesized DNA is not co-localized with nucleoids. Presumably, either the plastid replication machinery has means of removing nucleoid proteins prior to replication or the concentration of nucleoid proteins is tightly regulated and the proteins turned over in order to allow replication to proceed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The 68kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis invitro

Loading next page...
 
/lp/springer_journal/the-68kda-dna-compacting-nucleoid-protein-from-soybean-chloroplasts-22JdP7wIoy
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006135615924
Publisher site
See Article on Publisher Site

Abstract

Nucleoids were purified from chloroplasts of dividing soybean cells and their polypeptide composition analyzed by SDS-polyacrylamide gel electrophoresis. Of the 15–20 nucleoid-associated polypeptides, several demonstrated DNA binding activity. Upon disruption of the nucleoids with high concentrations of NaCl, a subset of these proteins and the majority of chloroplast DNA were recovered in the supernatant after centrifugation. Removal of the salt by dialysis resulted in formation of nucleoprotein complexes resembling genuine nucleoids. Purification of these structures revealed three major proteins of 68, 35 and 18 kDa. After purification of the 68 kDa protein to homogeneity, this protein was able to compact purified chloroplast DNA into a nucleoid-like structure in a protein concentration-dependent fashion. Addition of the 68 kDa protein to an in vitro chloroplast DNA replication system resulted in complete inhibition of nucleotide incorporation at concentrations above 300 ng of 68 kDa protein per μg of template DNA. These results led to in situ immunofluorescence studies of chloroplasts replicating DNA which suggested that newly synthesized DNA is not co-localized with nucleoids. Presumably, either the plastid replication machinery has means of removing nucleoid proteins prior to replication or the concentration of nucleoid proteins is tightly regulated and the proteins turned over in order to allow replication to proceed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off