Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The 68kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis invitro

The 68kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis invitro Nucleoids were purified from chloroplasts of dividing soybean cells and their polypeptide composition analyzed by SDS-polyacrylamide gel electrophoresis. Of the 15–20 nucleoid-associated polypeptides, several demonstrated DNA binding activity. Upon disruption of the nucleoids with high concentrations of NaCl, a subset of these proteins and the majority of chloroplast DNA were recovered in the supernatant after centrifugation. Removal of the salt by dialysis resulted in formation of nucleoprotein complexes resembling genuine nucleoids. Purification of these structures revealed three major proteins of 68, 35 and 18 kDa. After purification of the 68 kDa protein to homogeneity, this protein was able to compact purified chloroplast DNA into a nucleoid-like structure in a protein concentration-dependent fashion. Addition of the 68 kDa protein to an in vitro chloroplast DNA replication system resulted in complete inhibition of nucleotide incorporation at concentrations above 300 ng of 68 kDa protein per μg of template DNA. These results led to in situ immunofluorescence studies of chloroplasts replicating DNA which suggested that newly synthesized DNA is not co-localized with nucleoids. Presumably, either the plastid replication machinery has means of removing nucleoid proteins prior to replication or the concentration of nucleoid proteins is tightly regulated and the proteins turned over in order to allow replication to proceed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The 68kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis invitro

Loading next page...
 
/lp/springer_journal/the-68kda-dna-compacting-nucleoid-protein-from-soybean-chloroplasts-22JdP7wIoy

References (38)

Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1006135615924
Publisher site
See Article on Publisher Site

Abstract

Nucleoids were purified from chloroplasts of dividing soybean cells and their polypeptide composition analyzed by SDS-polyacrylamide gel electrophoresis. Of the 15–20 nucleoid-associated polypeptides, several demonstrated DNA binding activity. Upon disruption of the nucleoids with high concentrations of NaCl, a subset of these proteins and the majority of chloroplast DNA were recovered in the supernatant after centrifugation. Removal of the salt by dialysis resulted in formation of nucleoprotein complexes resembling genuine nucleoids. Purification of these structures revealed three major proteins of 68, 35 and 18 kDa. After purification of the 68 kDa protein to homogeneity, this protein was able to compact purified chloroplast DNA into a nucleoid-like structure in a protein concentration-dependent fashion. Addition of the 68 kDa protein to an in vitro chloroplast DNA replication system resulted in complete inhibition of nucleotide incorporation at concentrations above 300 ng of 68 kDa protein per μg of template DNA. These results led to in situ immunofluorescence studies of chloroplasts replicating DNA which suggested that newly synthesized DNA is not co-localized with nucleoids. Presumably, either the plastid replication machinery has means of removing nucleoid proteins prior to replication or the concentration of nucleoid proteins is tightly regulated and the proteins turned over in order to allow replication to proceed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

There are no references for this article.