The 1979 Submarine Landslide-Generated Tsunami in Mururoa, French Polynesia

The 1979 Submarine Landslide-Generated Tsunami in Mururoa, French Polynesia This paper aims at best describing the submarine landslide which induced partial submersion of the atolls of Mururoa and Fangataufa in 1979. More precisely, waves propagated along the south coast of Mururoa atoll and penetrated into its lagoon some minutes after the landslide triggering (t = 0 s), whereas a train of eight water waves reached the runway located on the north-east coast of Fangataufa (40 km south of Mururoa) between t = 7 min 30 s and t = 20 min. A numerical model based on shallow water equations is used to simulate the landslide as well as the associated tsunami. Saint-Venant equations are used to propagate the tsunami in coastal areas, whereas the offshore propagation is simulated by solving weakly nonlinear Boussinesq equations. Low- and high-resolution nested grids are used to simulate the tsunami propagation in deep sea and in shallow waters, respectively. Several scenarios have been tested to reproduce the observed water and run-up heights in the near and far fields. The best scenarios correspond to a landslide with a volume in the range (75–90 Mm3) (for a basal friction angle of 35°) and with a basal friction angle in the range (30°–40°) (for a volume of 80 Mm3). These results have been completed by a parametric study on the slide parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pure and Applied Geophysics Springer Journals

The 1979 Submarine Landslide-Generated Tsunami in Mururoa, French Polynesia

Loading next page...
 
/lp/springer_journal/the-1979-submarine-landslide-generated-tsunami-in-mururoa-french-Ys4fp9F50t
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Earth Sciences; Geophysics/Geodesy
ISSN
0033-4553
eISSN
1420-9136
D.O.I.
10.1007/s00024-016-1464-z
Publisher site
See Article on Publisher Site

Abstract

This paper aims at best describing the submarine landslide which induced partial submersion of the atolls of Mururoa and Fangataufa in 1979. More precisely, waves propagated along the south coast of Mururoa atoll and penetrated into its lagoon some minutes after the landslide triggering (t = 0 s), whereas a train of eight water waves reached the runway located on the north-east coast of Fangataufa (40 km south of Mururoa) between t = 7 min 30 s and t = 20 min. A numerical model based on shallow water equations is used to simulate the landslide as well as the associated tsunami. Saint-Venant equations are used to propagate the tsunami in coastal areas, whereas the offshore propagation is simulated by solving weakly nonlinear Boussinesq equations. Low- and high-resolution nested grids are used to simulate the tsunami propagation in deep sea and in shallow waters, respectively. Several scenarios have been tested to reproduce the observed water and run-up heights in the near and far fields. The best scenarios correspond to a landslide with a volume in the range (75–90 Mm3) (for a basal friction angle of 35°) and with a basal friction angle in the range (30°–40°) (for a volume of 80 Mm3). These results have been completed by a parametric study on the slide parameters.

Journal

Pure and Applied GeophysicsSpringer Journals

Published: Jan 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off