Texture classification based on curvelet transform and extreme learning machine with reduced feature set

Texture classification based on curvelet transform and extreme learning machine with reduced... In this work, a novel approach for texture classification is proposed. We present a highly discriminative and simple descriptor to achieve feature learning and classification simultaneously for texture classification. The proposed method introduces the application of digital curvelet transform and explores feature reduction properties of locality sensitive discriminant analysis (LSDA) in conjunction with extreme learning machine (ELM) classifier. The image is mapped to the curvelet space. However, the curse of dimensionality problem arises when using the curvelet coefficients directly and therefore a reduction method is required. LSDA is used to reduce the data dimensionality to generate relevant features. These reduced features are used as the input to ELM classifier to analytically learn an optimal model. In contrast to traditional methods, the proposed method learns the features by the network itself and can be applied to more general applications. Extensive experiments conducted in two different domains using two benchmark databases, illustrate the effectiveness of the proposed method. In addition, empirical comparisons of the proposed method against curvelet transform in conjunction with traditional dimensionality reduction tools show that the suggested method does not only lead to a more reduced feature set, but it also outperforms all the compared methods in terms of accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Texture classification based on curvelet transform and extreme learning machine with reduced feature set

Loading next page...
 
/lp/springer_journal/texture-classification-based-on-curvelet-transform-and-extreme-3FTBHU10kV
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4174-8
Publisher site
See Article on Publisher Site

Abstract

In this work, a novel approach for texture classification is proposed. We present a highly discriminative and simple descriptor to achieve feature learning and classification simultaneously for texture classification. The proposed method introduces the application of digital curvelet transform and explores feature reduction properties of locality sensitive discriminant analysis (LSDA) in conjunction with extreme learning machine (ELM) classifier. The image is mapped to the curvelet space. However, the curse of dimensionality problem arises when using the curvelet coefficients directly and therefore a reduction method is required. LSDA is used to reduce the data dimensionality to generate relevant features. These reduced features are used as the input to ELM classifier to analytically learn an optimal model. In contrast to traditional methods, the proposed method learns the features by the network itself and can be applied to more general applications. Extensive experiments conducted in two different domains using two benchmark databases, illustrate the effectiveness of the proposed method. In addition, empirical comparisons of the proposed method against curvelet transform in conjunction with traditional dimensionality reduction tools show that the suggested method does not only lead to a more reduced feature set, but it also outperforms all the compared methods in terms of accuracy.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Dec 8, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off