Tetra- and Penta-Cyclic Triterpenes Interaction with Lipid Bilayer Membrane: A Structural Comparative Study

Tetra- and Penta-Cyclic Triterpenes Interaction with Lipid Bilayer Membrane: A Structural... The effect of tetracyclic (cortisol, prednisolone, and 9-fluorocortisol acetate) and pentacyclic (uvaol and erythrodiol) triterpenes (TTPs) on the fluidity of dipalmitoyl phosphatidyl choline (DPPC) liposome membrane was investigated by differential scanning calorimetry, Raman spectroscopy, and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Liposomes were prepared in the absence and presence of TTPs at molar ratios DPPC:TTP 100:1, 100:2.5, and 100:10. All the studied TTPs abolished the pre-transition and modified the intensity of the Raman peak at 715 cm−1 proving the interaction of TTP molecules with the choline head group of phospholipids. An increase in the Raman height intensity ratios of the peaks I 2935/2880, I 2844/2880, and I 1090/1130, giving information about the ratio disorder/order of the alkyl chains, and a decrease of the main transition temperature demonstrated the interaction of TTPs with the alkyl chains. The tetracyclic TTPs produced broadening of the phase transition profile. Besides, a scarcely splitting of the main transition peak was obtained with prednisolone and 9-fluorocortisol acetate. The results of fluorescence depolarization of DPH showed that the studied molecules fluidized the liposomal membrane at 25, 41, and 50 °C. Pentacyclic TTPs, being more hydrophobic than tetracyclic ones, demonstrated higher fluidizing effect than tetracyclic TTPs in the liquid crystalline phase suggesting a deeper incorporation in the lipid bilayer. The presence of a free polar head group at the ring D seems to control the TTP incorporation in the bilayer and consequently its effect on the membrane fluidity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Tetra- and Penta-Cyclic Triterpenes Interaction with Lipid Bilayer Membrane: A Structural Comparative Study

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial