Tests of the mouse visual system

Tests of the mouse visual system To apply the approach of forward genetics (e.g., gene identification with mutagenesis and screening, followed by positional cloning) to the mouse, it is necessary to have available screening tests that can be applied rapidly to individual mice and that give a reliable assessment of visual function. This paper reviews the strengths and limitations of two anatomical tests related to visual function, fundus examination and retinal histological examination. Two tests that do not depend on behavior of a conscious animal are reviewed: the electroretinogram and the visual evoked potentials of the cortex. Eight behavioral tests are also summarized: maze-based tests, cued fear conditioning, tests based on conditioned suppression, visual placing, optokinetic nystagmus, pupillary reflex, and light-induced shifts in circadian phase. It is recommended that retinal histology, the electroretinogram, and visual-evoked potentials be used at the present time for screening because they assess the function and structure of the visual system rapidly and reliably. In fact, the electroretinogram (or visually evoked potentials) can be recorded from several animals simultaneously in response to the same stimulus. It is also recommended that efforts be made to develop more appropriate, automated, behavioral tests of visual perception than are now available, particularly tests that rely solely on rewarding visually evoked behavior. Two other promising behavioral tests are cued fear conditioning and variants of maze tests. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Tests of the mouse visual system

Loading next page...
 
/lp/springer_journal/tests-of-the-mouse-visual-system-p0dmpSvm9Z
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010102
Publisher site
See Article on Publisher Site

Abstract

To apply the approach of forward genetics (e.g., gene identification with mutagenesis and screening, followed by positional cloning) to the mouse, it is necessary to have available screening tests that can be applied rapidly to individual mice and that give a reliable assessment of visual function. This paper reviews the strengths and limitations of two anatomical tests related to visual function, fundus examination and retinal histological examination. Two tests that do not depend on behavior of a conscious animal are reviewed: the electroretinogram and the visual evoked potentials of the cortex. Eight behavioral tests are also summarized: maze-based tests, cued fear conditioning, tests based on conditioned suppression, visual placing, optokinetic nystagmus, pupillary reflex, and light-induced shifts in circadian phase. It is recommended that retinal histology, the electroretinogram, and visual-evoked potentials be used at the present time for screening because they assess the function and structure of the visual system rapidly and reliably. In fact, the electroretinogram (or visually evoked potentials) can be recorded from several animals simultaneously in response to the same stimulus. It is also recommended that efforts be made to develop more appropriate, automated, behavioral tests of visual perception than are now available, particularly tests that rely solely on rewarding visually evoked behavior. Two other promising behavioral tests are cued fear conditioning and variants of maze tests.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 25, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off