Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd mdx and Dmd mdx3cv dystrophin-deficient mice

Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd mdx and Dmd mdx3cv... The SHIRPA protocol was proposed as a rapid, comprehensive screening method for qualitatively abnormal phenotypes in the mouse (Rogers et al., Mamm Genome 8, 711, 1997). This screening technique is currently being used to identify mutants induced by N-ethylnitrosourea (ENU) mutagenesis (Brown and Nolan, Hum Mol Genet 7, 1627, 1998). SHIRPA can be used to identify mutants with neuromuscular abnormalities, but the sensitivity of the protocol is unknown. We tested two dystrophin-deficient mutants Dmd mdx and Dmd mdx3cv , both of which are indistinguishable from wild-type by a simple visual assessment, at different ages, using the primary screen of the SHIRPA protocol. The most dramatic observation was that both Dmd mdx and Dmd mdx3cv mice showed extreme fatigue after testing, while mice from the same C57BL strains appeared unaffected. Each strain of dystrophin-deficient mice showed a different profile in locomotor activity and deficiencies in the wire maneuver, righting reflex, and negative geotaxis tests. Furthermore, the wire maneuver test indicated an earlier onset of muscular impairment in Dmd mdx than Dmd mdx3cv mice. These data suggest that the SHIRPA primary screen is effective not only in identifying subtle neuromuscular mutants, but also in distinguishing qualitative differences between mutants with neuromuscular abnormalities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd mdx and Dmd mdx3cv dystrophin-deficient mice

Loading next page...
 
/lp/springer_journal/testing-of-shirpa-a-mouse-phenotypic-assessment-protocol-on-dmd-mdx-w0mvBIOFXy
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010149
Publisher site
See Article on Publisher Site

Abstract

The SHIRPA protocol was proposed as a rapid, comprehensive screening method for qualitatively abnormal phenotypes in the mouse (Rogers et al., Mamm Genome 8, 711, 1997). This screening technique is currently being used to identify mutants induced by N-ethylnitrosourea (ENU) mutagenesis (Brown and Nolan, Hum Mol Genet 7, 1627, 1998). SHIRPA can be used to identify mutants with neuromuscular abnormalities, but the sensitivity of the protocol is unknown. We tested two dystrophin-deficient mutants Dmd mdx and Dmd mdx3cv , both of which are indistinguishable from wild-type by a simple visual assessment, at different ages, using the primary screen of the SHIRPA protocol. The most dramatic observation was that both Dmd mdx and Dmd mdx3cv mice showed extreme fatigue after testing, while mice from the same C57BL strains appeared unaffected. Each strain of dystrophin-deficient mice showed a different profile in locomotor activity and deficiencies in the wire maneuver, righting reflex, and negative geotaxis tests. Furthermore, the wire maneuver test indicated an earlier onset of muscular impairment in Dmd mdx than Dmd mdx3cv mice. These data suggest that the SHIRPA primary screen is effective not only in identifying subtle neuromuscular mutants, but also in distinguishing qualitative differences between mutants with neuromuscular abnormalities.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 13, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off