Testicular germ cell tumor susceptibility genes from the consomic 129.MOLF-Chr19 mouse strain

Testicular germ cell tumor susceptibility genes from the consomic 129.MOLF-Chr19 mouse strain Chromosome substitution strains (CSS or consomic strains) are useful for mapping phenotypes to chromosomes. However, huge efforts are needed to identify the gene(s) responsible for the phenotype in the complex context of the chromosome. Here we report the identification of candidate disease genes from a CSS by using a combination of genetic and genomic approaches and by using knowledge about the germ cell tumor disease etiology. We used the CSS 129.MOLF-Chr19 chromosome substitution strain, in which males develop germ cell tumors of the testes at an extremely high rate. We were able to identify three protein-coding genes and one microRNA on chromosome 19 that have previously not been implicated to be testicular tumor susceptibility genes. Our findings suggest that changes in gene expression levels in the gonadal tissues of multiple genes from Chr 19 likely contribute to the high testicular germ cell tumor (TGCT) incidence of the 129.MOLF-Chr19 strain. Our data advance the use of CSS to identify disease susceptibility genes and demonstrate that the 129.MOLF-Chr19 strain serves as a useful model to elucidate the genetics and biology of germ cell transformation and tumor development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Testicular germ cell tumor susceptibility genes from the consomic 129.MOLF-Chr19 mouse strain

Loading next page...
 
/lp/springer_journal/testicular-germ-cell-tumor-susceptibility-genes-from-the-consomic-129-aHmb02sbET
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-007-9036-2
Publisher site
See Article on Publisher Site

Abstract

Chromosome substitution strains (CSS or consomic strains) are useful for mapping phenotypes to chromosomes. However, huge efforts are needed to identify the gene(s) responsible for the phenotype in the complex context of the chromosome. Here we report the identification of candidate disease genes from a CSS by using a combination of genetic and genomic approaches and by using knowledge about the germ cell tumor disease etiology. We used the CSS 129.MOLF-Chr19 chromosome substitution strain, in which males develop germ cell tumors of the testes at an extremely high rate. We were able to identify three protein-coding genes and one microRNA on chromosome 19 that have previously not been implicated to be testicular tumor susceptibility genes. Our findings suggest that changes in gene expression levels in the gonadal tissues of multiple genes from Chr 19 likely contribute to the high testicular germ cell tumor (TGCT) incidence of the 129.MOLF-Chr19 strain. Our data advance the use of CSS to identify disease susceptibility genes and demonstrate that the 129.MOLF-Chr19 strain serves as a useful model to elucidate the genetics and biology of germ cell transformation and tumor development.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 2, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off