Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and conversion to silica particles

Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and... Monodisperse organically modified silica (ORMOSIL) particles, with an average diameter ranging from 550 nm to 4.2 μm, were prepared at low temperature at a scale of about 10 g/batch by a simple one-step self-emulsion process. The reaction mixture was composed only of water, phenyltrimethoxysilane (PTMS), and a base catalyst, without any surfactants. The size control of the particles and the monodispersity of resultant particles were achieved through the controlled supply of hydrolyzed PTMS monomer molecules, which was enabled by manipulating the reaction parameters, such as monomer concentration, type and amount of base catalyst, stirring rate, and reaction temperature. PTMS-based ORMOSIL particles were converted into silica particles by employing either a wet chemical reaction with an oleum-sulfuric acid mixture or thermal treatment above 650 °C. Complete removal of organic groups from the ORMOSIL particles was achieved by the thermal treatment while ~ 74% removal was done by the chemical process used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Nanoparticle Research Springer Journals

Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and conversion to silica particles

Loading next page...
 
/lp/springer_journal/ten-gram-scale-preparation-of-ptms-based-monodisperse-ormosil-nano-and-gCY9WFHBzZ
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Materials Science; Nanotechnology; Inorganic Chemistry; Characterization and Evaluation of Materials; Physical Chemistry; Optics, Lasers, Photonics, Optical Devices
ISSN
1388-0764
eISSN
1572-896X
D.O.I.
10.1007/s11051-018-4186-6
Publisher site
See Article on Publisher Site

Abstract

Monodisperse organically modified silica (ORMOSIL) particles, with an average diameter ranging from 550 nm to 4.2 μm, were prepared at low temperature at a scale of about 10 g/batch by a simple one-step self-emulsion process. The reaction mixture was composed only of water, phenyltrimethoxysilane (PTMS), and a base catalyst, without any surfactants. The size control of the particles and the monodispersity of resultant particles were achieved through the controlled supply of hydrolyzed PTMS monomer molecules, which was enabled by manipulating the reaction parameters, such as monomer concentration, type and amount of base catalyst, stirring rate, and reaction temperature. PTMS-based ORMOSIL particles were converted into silica particles by employing either a wet chemical reaction with an oleum-sulfuric acid mixture or thermal treatment above 650 °C. Complete removal of organic groups from the ORMOSIL particles was achieved by the thermal treatment while ~ 74% removal was done by the chemical process used.

Journal

Journal of Nanoparticle ResearchSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off