TempoRec: Temporal-Topic Based Recommender for Social Network Services

TempoRec: Temporal-Topic Based Recommender for Social Network Services With the popularization of social networks, increasing numbers of users choose to use Weibo to get information. However, as the number of users grows, the information on Weibo is also multiplying, making it increasingly difficult for users to find the right information they are interested in. Therefore, how to recommend high-quality friends to follow the Weibo is one of the focuses of studies in Weibo-based personalized services. Based on existing Weibo social networking topologies and content-based hybrid recommendation algorithms, the study proposed a hybrid recommendation algorithm based on social relations and time-sequenced topics, which has been verified using Real Sina Weibo datasets. The results show that the improved hybrid recommendation algorithm works well and achieves better mean average precision (MAP) than existing other counterparts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mobile Networks and Applications Springer Journals

TempoRec: Temporal-Topic Based Recommender for Social Network Services

Loading next page...
 
/lp/springer_journal/temporec-temporal-topic-based-recommender-for-social-network-services-xHJOOAvMbY
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Computer Communication Networks; Electrical Engineering; IT in Business
ISSN
1383-469X
eISSN
1572-8153
D.O.I.
10.1007/s11036-017-0864-3
Publisher site
See Article on Publisher Site

Abstract

With the popularization of social networks, increasing numbers of users choose to use Weibo to get information. However, as the number of users grows, the information on Weibo is also multiplying, making it increasingly difficult for users to find the right information they are interested in. Therefore, how to recommend high-quality friends to follow the Weibo is one of the focuses of studies in Weibo-based personalized services. Based on existing Weibo social networking topologies and content-based hybrid recommendation algorithms, the study proposed a hybrid recommendation algorithm based on social relations and time-sequenced topics, which has been verified using Real Sina Weibo datasets. The results show that the improved hybrid recommendation algorithm works well and achieves better mean average precision (MAP) than existing other counterparts.

Journal

Mobile Networks and ApplicationsSpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off