Temporary feeding shocks increase the productivity in a continuous biohydrogen-producing reactor

Temporary feeding shocks increase the productivity in a continuous biohydrogen-producing reactor Continuous hydrogen production stability and robustness by dark fermentation were comprehensively studied at laboratory scale. Continuous bioreactors were operated at two different hydraulic retention times (HRT) of 6 and 10 h. The reactors were subjected to feeding shocks given by decreases in the HRT, and therefore the organic loading increases, during 6 and 24 h. Results indicated that the H2 productivity was significantly improved by the temporary organic shock loads, increasing the hydrogen production rate up to 40%, compared to the rate obtained at the steady-state condition. Besides, it was observed that after the shock load, the stability of the reactor (measured as the hydrogen production rate) was recovered attaining the values observed before the feeding shocks. The bioreactor operated at shorter HRT (6 h) showed better H2 productivity (17.3 ± 1.1 L H2/L-d) in comparison with the other one operated at 10-h HRT (12.4 ± 1.6 L H2/L-d). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clean Technologies and Environmental Policy Springer Journals

Temporary feeding shocks increase the productivity in a continuous biohydrogen-producing reactor

Loading next page...
 
/lp/springer_journal/temporary-feeding-shocks-increase-the-productivity-in-a-continuous-pxBWaD2eSM
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Sustainable Development; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Environmental Economics
ISSN
1618-954X
eISSN
1618-9558
D.O.I.
10.1007/s10098-018-1555-x
Publisher site
See Article on Publisher Site

Abstract

Continuous hydrogen production stability and robustness by dark fermentation were comprehensively studied at laboratory scale. Continuous bioreactors were operated at two different hydraulic retention times (HRT) of 6 and 10 h. The reactors were subjected to feeding shocks given by decreases in the HRT, and therefore the organic loading increases, during 6 and 24 h. Results indicated that the H2 productivity was significantly improved by the temporary organic shock loads, increasing the hydrogen production rate up to 40%, compared to the rate obtained at the steady-state condition. Besides, it was observed that after the shock load, the stability of the reactor (measured as the hydrogen production rate) was recovered attaining the values observed before the feeding shocks. The bioreactor operated at shorter HRT (6 h) showed better H2 productivity (17.3 ± 1.1 L H2/L-d) in comparison with the other one operated at 10-h HRT (12.4 ± 1.6 L H2/L-d).

Journal

Clean Technologies and Environmental PolicySpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off