Temporal XML: modeling, indexing, and query processing

Temporal XML: modeling, indexing, and query processing In this paper we address the problem of modeling and implementing temporal data in XML. We propose a data model for tracking historical information in an XML document and for recovering the state of the document as of any given time. We study the temporal constraints imposed by the data model, and present algorithms for validating a temporal XML document against these constraints, along with methods for fixing inconsistent documents. In addition, we discuss different ways of mapping the abstract representation into a temporal XML document, and introduce TXPath, a temporal XML query language that extends XPath 2.0. In the second part of the paper, we present our approach for summarizing and indexing temporal XML documents. In particular we show that by indexing continuous paths , i.e., paths that are valid continuously during a certain interval in a temporal XML graph, we can dramatically increase query performance. To achieve this, we introduce a new class of summaries, denoted TSummary , that adds the time dimension to the well-known path summarization schemes. Within this framework, we present two new summaries: LCP and Interval summaries. The indexing scheme, denoted TempIndex, integrates these summaries with additional data structures. We give a query processing strategy based on TempIndex and a type of ancestor-descendant encoding, denoted temporal interval encoding. We present a persistent implementation of TempIndex, and a comparison against a system based on a non-temporal path index, and one based on DOM. Finally, we sketch a language for updates, and show that the cost of updating the index is compatible with real-world requirements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Temporal XML: modeling, indexing, and query processing

Loading next page...
 
/lp/springer_journal/temporal-xml-modeling-indexing-and-query-processing-Lhb6huxhl7
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0058-x
Publisher site
See Article on Publisher Site

Abstract

In this paper we address the problem of modeling and implementing temporal data in XML. We propose a data model for tracking historical information in an XML document and for recovering the state of the document as of any given time. We study the temporal constraints imposed by the data model, and present algorithms for validating a temporal XML document against these constraints, along with methods for fixing inconsistent documents. In addition, we discuss different ways of mapping the abstract representation into a temporal XML document, and introduce TXPath, a temporal XML query language that extends XPath 2.0. In the second part of the paper, we present our approach for summarizing and indexing temporal XML documents. In particular we show that by indexing continuous paths , i.e., paths that are valid continuously during a certain interval in a temporal XML graph, we can dramatically increase query performance. To achieve this, we introduce a new class of summaries, denoted TSummary , that adds the time dimension to the well-known path summarization schemes. Within this framework, we present two new summaries: LCP and Interval summaries. The indexing scheme, denoted TempIndex, integrates these summaries with additional data structures. We give a query processing strategy based on TempIndex and a type of ancestor-descendant encoding, denoted temporal interval encoding. We present a persistent implementation of TempIndex, and a comparison against a system based on a non-temporal path index, and one based on DOM. Finally, we sketch a language for updates, and show that the cost of updating the index is compatible with real-world requirements.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off