Temporal stability of soil water storage and its influencing factors on a forestland hillslope during the rainy season in China’s Loess Plateau

Temporal stability of soil water storage and its influencing factors on a forestland hillslope... Large-scale vegetation restoration in China’s Loess Plateau has been initiated by the central government to control soil and water losses since 1999. Knowledge of the spatio-temporal distribution of soil water storage (SWS) is critical to fully understand hydrological and ecological processes. This study analysed the temporal stability of the SWS pattern during the rainy season on a hillslope covered with Chinese pine (Pinus tabulaeformis Carr.). The soil water content in eight soil layers was obtained at 21 locations during the rainy season in 2014 and 2015. The results showed that the SWS at the 21 locations followed a normal distribution, which indicated moderate variability with the coefficients of variation ranging from 14 to 33%. The mean SWS was lowest in the middle slope. The spatial pattern of SWS displayed strong temporal stability, and the Spearman correlation coefficient ranged from 0.42 to 0.99 (p < 0.05). There were significant differences in the temporal stability of SWS among different soil layers (p < 0.01). The spatial patterns of SWS distribution showed small differences in different periods. The best representative locations of SWS were found at different soil depths. The maximum RMSE and MAE at 0–1.6 m soil depth for the rainy season were 4.27 and 3.54 mm, respectively. The best representative locations determined during a short period (13 days) can be used to estimate the mean SWS well for the same rainy season, but not for the next rainy season. Samples of SWS collected over a fortnight during the rainy season were able to capture the spatial patterns of soil moisture. Roots were the main factor affecting the temporal stability of SWS. Rainfall increased the temporal stability of the soil water distribution pattern. In conclusion, the SWS during the rainy season had a strong temporal stability on the forestland hillslope. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Earth Sciences Springer Journals

Temporal stability of soil water storage and its influencing factors on a forestland hillslope during the rainy season in China’s Loess Plateau

Loading next page...
 
/lp/springer_journal/temporal-stability-of-soil-water-storage-and-its-influencing-factors-NhW0SXjLRD
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Hydrology/Water Resources; Geochemistry; Environmental Science and Engineering; Terrestrial Pollution; Biogeosciences
ISSN
1866-6280
eISSN
1866-6299
D.O.I.
10.1007/s12665-017-6850-z
Publisher site
See Article on Publisher Site

Abstract

Large-scale vegetation restoration in China’s Loess Plateau has been initiated by the central government to control soil and water losses since 1999. Knowledge of the spatio-temporal distribution of soil water storage (SWS) is critical to fully understand hydrological and ecological processes. This study analysed the temporal stability of the SWS pattern during the rainy season on a hillslope covered with Chinese pine (Pinus tabulaeformis Carr.). The soil water content in eight soil layers was obtained at 21 locations during the rainy season in 2014 and 2015. The results showed that the SWS at the 21 locations followed a normal distribution, which indicated moderate variability with the coefficients of variation ranging from 14 to 33%. The mean SWS was lowest in the middle slope. The spatial pattern of SWS displayed strong temporal stability, and the Spearman correlation coefficient ranged from 0.42 to 0.99 (p < 0.05). There were significant differences in the temporal stability of SWS among different soil layers (p < 0.01). The spatial patterns of SWS distribution showed small differences in different periods. The best representative locations of SWS were found at different soil depths. The maximum RMSE and MAE at 0–1.6 m soil depth for the rainy season were 4.27 and 3.54 mm, respectively. The best representative locations determined during a short period (13 days) can be used to estimate the mean SWS well for the same rainy season, but not for the next rainy season. Samples of SWS collected over a fortnight during the rainy season were able to capture the spatial patterns of soil moisture. Roots were the main factor affecting the temporal stability of SWS. Rainfall increased the temporal stability of the soil water distribution pattern. In conclusion, the SWS during the rainy season had a strong temporal stability on the forestland hillslope.

Journal

Environmental Earth SciencesSpringer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off