Temporal progression of gene expression responses to salt shock in maize roots

Temporal progression of gene expression responses to salt shock in maize roots Using a cDNA microarray containing 7943 ESTs, the behavior of the maize root transcriptome has been monitored in a time course for 72 h after imposition of salinity stress (150 mM NaCl). Under these conditions, root sodium amounts increased faster than in leaves, and root potassium decreased significantly. Although the overall free amino acid concentration was not affected, amino acid composition was changed with proline and asparagine increasing. Microarray analysis identified 916 ESTs representing genes whose steady-state RNA levels were significantly altered at various time points, corresponding to 11% of the ESTs printed. The response of the transcriptome to sub-lethal salt stress was rapid and transient, leading to a burst of changes at the three-hour time point. The salt-regulated ESTs represented 472 tentatively unique genes (TUGs), which, based on functional category analysis, are involved in a broad range of cellular and biochemical activities, prominent amongst which were transport and signal transduction pathways. Clustering of regulated transcripts based on the timing and duration of changes suggests a structured succession of induction and repression for salt responsive genes in multiple signal and response cascades. Within this framework, 16 signaling molecules, including six protein kinases, two protein phosphatases and eight transcription factors, were regulated with distinct expression patterns by high salinity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Temporal progression of gene expression responses to salt shock in maize roots

Loading next page...
 
/lp/springer_journal/temporal-progression-of-gene-expression-responses-to-salt-shock-in-qlVIqkWmnK
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1025029026375
Publisher site
See Article on Publisher Site

Abstract

Using a cDNA microarray containing 7943 ESTs, the behavior of the maize root transcriptome has been monitored in a time course for 72 h after imposition of salinity stress (150 mM NaCl). Under these conditions, root sodium amounts increased faster than in leaves, and root potassium decreased significantly. Although the overall free amino acid concentration was not affected, amino acid composition was changed with proline and asparagine increasing. Microarray analysis identified 916 ESTs representing genes whose steady-state RNA levels were significantly altered at various time points, corresponding to 11% of the ESTs printed. The response of the transcriptome to sub-lethal salt stress was rapid and transient, leading to a burst of changes at the three-hour time point. The salt-regulated ESTs represented 472 tentatively unique genes (TUGs), which, based on functional category analysis, are involved in a broad range of cellular and biochemical activities, prominent amongst which were transport and signal transduction pathways. Clustering of regulated transcripts based on the timing and duration of changes suggests a structured succession of induction and repression for salt responsive genes in multiple signal and response cascades. Within this framework, 16 signaling molecules, including six protein kinases, two protein phosphatases and eight transcription factors, were regulated with distinct expression patterns by high salinity.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off