Temporal Aggregation in Repeated Sales Models

Temporal Aggregation in Repeated Sales Models Over the years, repeated sales models have come to wide and even commercial use. However, considering the subset of dwellings sold twice entail several challenges. Small sample problems constitute a special concern in repeated sales models, since sample sizes tend to be smaller than hedonic methods based on all transactions in a given period of time. Moreover, a cluster of observations in one time period does not only influence the index corresponding to that particular time period, but all other estimated indexes. A simulation approach is used to study the interplay between sample size and temporal aggregation. The analysis shows that serious mis-measurements may occur even in cases where the statistical diagnostic tools like R 2 and t-values and empiric standard deviations indicate good explanatory power. However, the risk of serious biases driven by sparse data sets tends to be small, even if the actual estimated price curve show signs of under-smoothing. Mis-measured curves have unstable estimates with respect to temporal aggregation. Two repeated models, one with a slightly finer time partition achieved by adding one more time dummy, used on the same sample can alter the index estimate at a given time with as much at 10–15%. The simulations reveal that varying temporal aggregation is a powerful diagnostic tool and should be employed routinely. The last part of the paper shows that choosing an appropriate temporal aggregation involves more than merely a balance between under-smoothing and over-smoothing. Efficiency questions tend to be better addressed by a higher temporal aggregation, than a good overall estimation of the price curve alone calls for. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Temporal Aggregation in Repeated Sales Models

Loading next page...
 
/lp/springer_journal/temporal-aggregation-in-repeated-sales-models-QhdgVMzJD3
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science + Business Media, LLC
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-006-8946-1
Publisher site
See Article on Publisher Site

Abstract

Over the years, repeated sales models have come to wide and even commercial use. However, considering the subset of dwellings sold twice entail several challenges. Small sample problems constitute a special concern in repeated sales models, since sample sizes tend to be smaller than hedonic methods based on all transactions in a given period of time. Moreover, a cluster of observations in one time period does not only influence the index corresponding to that particular time period, but all other estimated indexes. A simulation approach is used to study the interplay between sample size and temporal aggregation. The analysis shows that serious mis-measurements may occur even in cases where the statistical diagnostic tools like R 2 and t-values and empiric standard deviations indicate good explanatory power. However, the risk of serious biases driven by sparse data sets tends to be small, even if the actual estimated price curve show signs of under-smoothing. Mis-measured curves have unstable estimates with respect to temporal aggregation. Two repeated models, one with a slightly finer time partition achieved by adding one more time dummy, used on the same sample can alter the index estimate at a given time with as much at 10–15%. The simulations reveal that varying temporal aggregation is a powerful diagnostic tool and should be employed routinely. The last part of the paper shows that choosing an appropriate temporal aggregation involves more than merely a balance between under-smoothing and over-smoothing. Efficiency questions tend to be better addressed by a higher temporal aggregation, than a good overall estimation of the price curve alone calls for.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Jul 20, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off