Tempo and mode of evolution in an orthologous Can SINE

Tempo and mode of evolution in an orthologous Can SINE Tempo and mode of nucleotide change were examined in an orthologous carnivoran nuclear repetitive DNA element (Can SINE), and compared with those of the transthyretin intron I (TR-i-I) sequence in which it is embedded, by using a phylogenetic framework. The Can SINE is found in representatives of all living caniform carnivoran families, but no living feliform families. This suggests insertion 40–65 MYA, after the two lineages split, but before the caniform radiation. Despite linkage and a long shared evolutionary history, both parsimony and likelihood analyses showed the Can SINE to be significantly different from TR-i-I in rates of evolution and phylogenetic hypotheses supported. The substitution rate is significantly higher in Can SINE than in TR-i-I, and this is attributable to the tRNA-related region of the insertion. While the incongruence length difference test revealed significant conflict between the Can SINE and TR-i-I partitions, the test was shown to be sensitive to the distribution of homoplasy within partitions. The conflicting phylogenies are likely the result of differences in phylogenetic accuracy (homoplasy distribution) rather than in phylogenetic history (gene trees). The base composition of Can SINE contains a significantly higher GC percentage than TR-i-I. Our results indicate that differences between the two partitions may be the result of homoplasy introduced by an increased substitution rate in the tRNA-related region of Can SINE owing to CpG hypermutability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Tempo and mode of evolution in an orthologous Can SINE

Loading next page...
 
/lp/springer_journal/tempo-and-mode-of-evolution-in-an-orthologous-can-sine-0uNwBIe81l
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010224
Publisher site
See Article on Publisher Site

Abstract

Tempo and mode of nucleotide change were examined in an orthologous carnivoran nuclear repetitive DNA element (Can SINE), and compared with those of the transthyretin intron I (TR-i-I) sequence in which it is embedded, by using a phylogenetic framework. The Can SINE is found in representatives of all living caniform carnivoran families, but no living feliform families. This suggests insertion 40–65 MYA, after the two lineages split, but before the caniform radiation. Despite linkage and a long shared evolutionary history, both parsimony and likelihood analyses showed the Can SINE to be significantly different from TR-i-I in rates of evolution and phylogenetic hypotheses supported. The substitution rate is significantly higher in Can SINE than in TR-i-I, and this is attributable to the tRNA-related region of the insertion. While the incongruence length difference test revealed significant conflict between the Can SINE and TR-i-I partitions, the test was shown to be sensitive to the distribution of homoplasy within partitions. The conflicting phylogenies are likely the result of differences in phylogenetic accuracy (homoplasy distribution) rather than in phylogenetic history (gene trees). The base composition of Can SINE contains a significantly higher GC percentage than TR-i-I. Our results indicate that differences between the two partitions may be the result of homoplasy introduced by an increased substitution rate in the tRNA-related region of Can SINE owing to CpG hypermutability.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off