Temperature variation model of titanium alloy L-angle profile in hot stretch forming with resistance heating

Temperature variation model of titanium alloy L-angle profile in hot stretch forming with... Titanium alloy profiles are excellent candidates for lots of applications, especially in aerospace field. High temperature is needed in the hot stretch-forming process because of the low plasticity of titanium alloy at room temperature. Resistance heating, with the benefit of device simplification and energy saving, is one of the most commonly used heating methods. In this paper, temperature variation model was developed for titanium alloy profile during resistance heating. The results show that the equilibrium temperature rises as the heating power increases. The temperature variation curves show that the temperature increases rapidly firstly, then keep nearly constant. Shorter heating time is needed to achieve the equilibrium temperature when higher heating power is applied. The thermal variation shows promising agreement with the experimental data, which confirms the feasibility of the developed models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Temperature variation model of titanium alloy L-angle profile in hot stretch forming with resistance heating

Loading next page...
 
/lp/springer_journal/temperature-variation-model-of-titanium-alloy-l-angle-profile-in-hot-YUgJZrFwgs
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1334-6
Publisher site
See Article on Publisher Site

Abstract

Titanium alloy profiles are excellent candidates for lots of applications, especially in aerospace field. High temperature is needed in the hot stretch-forming process because of the low plasticity of titanium alloy at room temperature. Resistance heating, with the benefit of device simplification and energy saving, is one of the most commonly used heating methods. In this paper, temperature variation model was developed for titanium alloy profile during resistance heating. The results show that the equilibrium temperature rises as the heating power increases. The temperature variation curves show that the temperature increases rapidly firstly, then keep nearly constant. Shorter heating time is needed to achieve the equilibrium temperature when higher heating power is applied. The thermal variation shows promising agreement with the experimental data, which confirms the feasibility of the developed models.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off