Temperature measurements of binary droplets using three-color laser-induced fluorescence

Temperature measurements of binary droplets using three-color laser-induced fluorescence Evaporation of multicomponent droplets is a critical problem in many engineering applications, for example spray combustion. Knowledge of droplet temperature is a key issue in understanding the highly complex heat and mass-transfer phenomena related to multicomponent droplet evaporation and combustion. In this work, optical diagnosis based on three color-laser-induced fluorescence was developed: the objective was to measure the temperature of binary droplets (ethanol and acetone mixtures), even when the composition varies with time. Demonstration on an overheated droplet stream of acetone–ethanol mixtures is described and the experimental data are compared with results from a numerical simulation based on the discrete-components model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Temperature measurements of binary droplets using three-color laser-induced fluorescence

Loading next page...
 
/lp/springer_journal/temperature-measurements-of-binary-droplets-using-three-color-laser-gW1DkHJBgi
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0116-y
Publisher site
See Article on Publisher Site

Abstract

Evaporation of multicomponent droplets is a critical problem in many engineering applications, for example spray combustion. Knowledge of droplet temperature is a key issue in understanding the highly complex heat and mass-transfer phenomena related to multicomponent droplet evaporation and combustion. In this work, optical diagnosis based on three color-laser-induced fluorescence was developed: the objective was to measure the temperature of binary droplets (ethanol and acetone mixtures), even when the composition varies with time. Demonstration on an overheated droplet stream of acetone–ethanol mixtures is described and the experimental data are compared with results from a numerical simulation based on the discrete-components model.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 16, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off