Temperature measurement near the triple line during phase change using thermochromic liquid crystal thermography

Temperature measurement near the triple line during phase change using thermochromic liquid... The temperature generated by the evaporation of a volatile liquid in a confined space (tube ∅=1,630 μm) was mapped onto the tube surface with the use of unsealed thermochromic liquid crystals (TLCs). The strong evaporative cooling effect located near the meniscus triple line generates a temperature dip. Despite the thermal diffusion through the tube’s thickness and its geometry, the TLC thickness and the inherent difficulties of working with unsealed TLCs, the present technique has revealed to be a suitable tool for accurate temperature measurement at the microscale size. The evaporation flux is deduced from the profile of temperature and comparison with the experimental measurement shows a very good agreement. The role of the nature and thickness of the tube wall material on the diffusion of the temperature profile from the inside to the outside is also investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Temperature measurement near the triple line during phase change using thermochromic liquid crystal thermography

Loading next page...
 
/lp/springer_journal/temperature-measurement-near-the-triple-line-during-phase-change-using-uy1GnZIfR9
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0986-4
Publisher site
See Article on Publisher Site

Abstract

The temperature generated by the evaporation of a volatile liquid in a confined space (tube ∅=1,630 μm) was mapped onto the tube surface with the use of unsealed thermochromic liquid crystals (TLCs). The strong evaporative cooling effect located near the meniscus triple line generates a temperature dip. Despite the thermal diffusion through the tube’s thickness and its geometry, the TLC thickness and the inherent difficulties of working with unsealed TLCs, the present technique has revealed to be a suitable tool for accurate temperature measurement at the microscale size. The evaporation flux is deduced from the profile of temperature and comparison with the experimental measurement shows a very good agreement. The role of the nature and thickness of the tube wall material on the diffusion of the temperature profile from the inside to the outside is also investigated.

Journal

Experiments in FluidsSpringer Journals

Published: May 13, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off