Temperature-Induced Change of Variant Surface Antigen Expression in ParameciumInvolves Antigen Release into the Culture Medium with Considerable Delay betweenTranscription and Surface Expression

Temperature-Induced Change of Variant Surface Antigen Expression in ParameciumInvolves Antigen... We analyzed temperature-induced changes of variant surface antigen (vsAg) expression in Paramecium primaurelia, using immuno-techniques and mRNA determinations. Upon a 23°C to 33°C shift, the old vsAg, type 156G, remains on the cell surface for a time, when already mRNA for the new form, 156D, is expressed. A considerable amount of 156D-specific mRNA is formed 45–48 h after the temperature shift, while 156D surface expression reaches maximal levels only after >72 h. A new aspect of these experiments is that, during this transition, the old vsAg is steadily released in high-molecular-weight form into the culture medium, as found by dot blot and Western blot analysis of concentrated culture medium. The new vsAg form is first inserted into the somatic cell membrane, before it spreads also into cilia. In the reverse transition, 33°C to 23°C, the adaptation on the level of transcription and surface expression is considerably faster. While we had previously shown, under steady-state conditions (constant temperature), the occurrence of a degradation pathway by endocytotic and phagocytotic ingestion of vsAg this may proceed in parallel to the steady release of old vsAg from the cell surface into the medium. Altogether these combined processes may facilitate the installation of the new vsAg type. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Temperature-Induced Change of Variant Surface Antigen Expression in ParameciumInvolves Antigen Release into the Culture Medium with Considerable Delay betweenTranscription and Surface Expression

Loading next page...
 
/lp/springer_journal/temperature-induced-change-of-variant-surface-antigen-expression-in-T4vOgoonyz
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-004-0690-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial