Temperature Dependence of Membrane Lipid Composition in Early Blastula Embryos of Lytechinus pictus: Selective Sorting of Phospholipids into Nascent Plasma Membranes

Temperature Dependence of Membrane Lipid Composition in Early Blastula Embryos of Lytechinus... Lytechinus pictus eggs were fertilized and incubated at 10, 16, and 23°C until the early blastula stage of embryonic development. The phospholipid composition of the embryos and control unfertilized eggs remain identical and unchanged as incubating temperatures are varied; thus, neither incubating temperature, fertilization nor membrane assembly affect their total phospholipid composition. This result agrees with metabolic studies by others, using only a single incubation temperature, and indicates that embryonic development to the early blastula stage occurs with little, if any, de novo phospholipid biosynthesis. However, as in all poikilotherms, the phospholipid composition of the nascent plasma membranes varies with the incubation temperature. Thus, until the blastula stage of embryonic development, the lipids of these newly formed plasma membranes are derived from lipid pools within the embryo whose phospholipid composition is static. The variation of plasma membrane composition is primarily reflected in an increase in the phosphatidylethanolamine (PE): phosphatidylcholine (PC) ratio as incubating temperatures decrease; this is achieved by an exchange of PE for PC. Several mechanisms are considered for the specificity of the selective sorting and assembly of these phospholipids into the nascent plasma membranes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Temperature Dependence of Membrane Lipid Composition in Early Blastula Embryos of Lytechinus pictus: Selective Sorting of Phospholipids into Nascent Plasma Membranes

Loading next page...
 
/lp/springer_journal/temperature-dependence-of-membrane-lipid-composition-in-early-blastula-hHRqAp3fQH
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900557
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial