Teleportation-based quantum computation, extended Temperley–Lieb diagrammatical approach and Yang–Baxter equation

Teleportation-based quantum computation, extended Temperley–Lieb diagrammatical approach and... This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley–Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang–Baxter gate by its extended Temperley–Lieb configuration and then study teleportation-based quantum circuit models using the Yang–Baxter gate. Moreover, we discuss the relationship between the extended Temperley–Lieb diagrammatical approach and the Yang–Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley–Lieb diagrammatical approach, for physicists in quantum information and quantum computation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Teleportation-based quantum computation, extended Temperley–Lieb diagrammatical approach and Yang–Baxter equation

Loading next page...
 
/lp/springer_journal/teleportation-based-quantum-computation-extended-temperley-lieb-Jn2rdlnTgY
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1158-y
Publisher site
See Article on Publisher Site

Abstract

This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley–Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang–Baxter gate by its extended Temperley–Lieb configuration and then study teleportation-based quantum circuit models using the Yang–Baxter gate. Moreover, we discuss the relationship between the extended Temperley–Lieb diagrammatical approach and the Yang–Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley–Lieb diagrammatical approach, for physicists in quantum information and quantum computation.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 3, 2015

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A; Podolsky, B; Rosen, N

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off