TCP over OBS: Impact of consecutive multiple packet losses and improvements

TCP over OBS: Impact of consecutive multiple packet losses and improvements In TCP over OBS networks, consecutive multiple packet losses are common since an optical burst usually contains a number of consecutive packets from the same TCP sender. In this paper, we first present a new theoretical method to analyze the behavior of Reno when consecutive multiple packet losses occur. Results of the analysis indicate that even a small number of consecutive multiple packet losses can force Reno to timeout. Then we propose B-Reno, a newly designed TCP implementation that can overcome Reno’s inefficiency in dealing with consecutive multiple packet losses over OBS networks and can avoid the shortcomings of New-Reno and SACK. Results of comprehensive simulations indicate that B-Reno over OBS networks can achieve a performance better than Reno and New-Reno, and that it can also achieve a performance similar to that of SACK. Moreover, B-Reno only needs some simple modifications to New-Reno at the sender’s protocol stack, and thus has less difficulty in deployment and less protocol complexity than that of SACK. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

TCP over OBS: Impact of consecutive multiple packet losses and improvements

Loading next page...
 
/lp/springer_journal/tcp-over-obs-impact-of-consecutive-multiple-packet-losses-and-JJ7CeoL5d9
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0131-4
Publisher site
See Article on Publisher Site

Abstract

In TCP over OBS networks, consecutive multiple packet losses are common since an optical burst usually contains a number of consecutive packets from the same TCP sender. In this paper, we first present a new theoretical method to analyze the behavior of Reno when consecutive multiple packet losses occur. Results of the analysis indicate that even a small number of consecutive multiple packet losses can force Reno to timeout. Then we propose B-Reno, a newly designed TCP implementation that can overcome Reno’s inefficiency in dealing with consecutive multiple packet losses over OBS networks and can avoid the shortcomings of New-Reno and SACK. Results of comprehensive simulations indicate that B-Reno over OBS networks can achieve a performance better than Reno and New-Reno, and that it can also achieve a performance similar to that of SACK. Moreover, B-Reno only needs some simple modifications to New-Reno at the sender’s protocol stack, and thus has less difficulty in deployment and less protocol complexity than that of SACK.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 22, 2008

References

  • Terabit burst switching
    Turner, J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off