TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis (L.) O. Kuntze]

TCP family genes control leaf development and its responses to hormonal stimuli in tea plant... Tea plant [Camellia sinensis (L.) O. Kuntze] is a perennial evergreen woody crop that is cultivated worldwide. Tea leaf is an important resource for producing natural non-alcoholic beverages. TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS) is a transcription factor family that controls the cell growth and proliferation of leaf tissues. In this study, 17 homologous TCP family transcription factors were identified and characterized in the leaf transcriptome of C. sinensis. The structural features, phylogenetic tree, and interaction networks of C. sinensis TCP (CsTCP) proteins were analyzed. Prediction of miRNA target sites suggests that miR319 may be involved in the post-transcriptional regulation of the CsTCP15 transcript. The expression profiles of all identified CsTCP genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA3, IAA, MeJA, and SA). Several CsTCP genes presented functional redundancies in leaf development and response to hormones. This study establishes an extensive overview of the TCP family genes and provides insights into the molecular mechanism of leaf development and hormonal stimuli in C. sinensis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Growth Regulation Springer Journals

TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis (L.) O. Kuntze]

Loading next page...
 
/lp/springer_journal/tcp-family-genes-control-leaf-development-and-its-responses-to-qGOfp0RC0n
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Plant Anatomy/Development; Plant Physiology; Agriculture
ISSN
0167-6903
eISSN
1573-5087
D.O.I.
10.1007/s10725-017-0282-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial