Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells

Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac... A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco’s modified Eagle’s medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Biochemistry Springer Journals

Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells

Loading next page...
 
/lp/springer_journal/tbx18-dependent-differentiation-of-brown-adipose-tissue-derived-stem-HbqR01G94p

References (35)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Medical Biochemistry; Oncology; Cardiology
ISSN
0300-8177
eISSN
1573-4919
DOI
10.1007/s11010-017-3016-y
pmid
28382491
Publisher site
See Article on Publisher Site

Abstract

A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco’s modified Eagle’s medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors.

Journal

Molecular and Cellular BiochemistrySpringer Journals

Published: Apr 5, 2017

There are no references for this article.