Targeted insertion of two Mthfr promoters in mice reveals temporal- and tissue-specific regulation

Targeted insertion of two Mthfr promoters in mice reveals temporal- and tissue-specific regulation Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in folate metabolism, synthesizes 5-methyltetrahydrofolate, the main circulatory form of folate which is required for maintaining nontoxic levels of homocysteine and providing one-carbon units for methylation. A common 677C → T variant in MTHFR confers mild MTHFR deficiency and has been associated with a number of human disorders, including neural tube defects and vascular disease. Two promoters of Mthfr, designated as upstream and downstream promoters, are located upstream of a transcription start site cluster and have previously demonstrated cell-specific activities. In this study we used a unique approach for targeted, single-copy transgene insertion to generate transgenic mice carrying a Mthfr upstream or Mthfr downstream promoter-reporter construct located 5′ to the endogenous Hprt (hypoxanthine-guanine phosphoribosyltransferase) locus. The Mthfr downstream promoter demonstrated activity in the neural tube, neural crest cells, dorsal root ganglia, heart, and endothelial cells of blood vessels in 10.5-days post coitum embryos and placentas. Upstream promoter activity was absent at this developmental stage. Postnatally, both promoters demonstrated activity in the brain stem, hippocampus, and thalamus of 1-week-old brain that became stronger in the adult. The Mthfr upstream promoter also showed activity in the cerebellum and cerebral cortex. Both promoters were active in male reproductive tissues, including 1-week-old epididymides, and there was upstream promoter-specific activity in the adult testis. Our investigation of Mthfr regulation in an in vivo mouse model revealed temporal- and tissue-specific regulation that supports important roles for MTHFR in the developing embryo, and in postnatal brain and male reproductive tissues. Mammalian Genome Springer Journals

Targeted insertion of two Mthfr promoters in mice reveals temporal- and tissue-specific regulation

Loading next page...
Copyright © 2011 by Springer Science+Business Media, LLC
Life Sciences; Zoology; Cell Biology; Anatomy
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial