Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle

Targeted imputation of sequence variants and gene expression profiling identifies twelve... Dairy cattle are an interesting model for gaining insights into the genes responsible for the large variation between and within mammalian species in the protein and fat content of their milk and their milk volume. Large numbers of phenotypes for these traits are available, as well as full genome sequence of key founders of modern dairy cattle populations. In twenty target QTL regions affecting milk production traits, we imputed full genome sequence variant genotypes into a population of 16,721 Holstein and Jersey cattle with excellent phenotypes. Association testing was used to identify variants within each target region, and gene expression data were used to identify possible gene candidates. There was statistical support for imputed sequence variants in or close to BTRC, MGST1, SLC37A1, STAT5A, STAT5B, PAEP, VDR, CSF2RB, MUC1, NCF4, and GHDC associated with milk production, and EPGN for calving interval. Of these candidates, analysis of RNA-Seq data demonstrated that PAEP, VDR, SLC37A1, GHDC, MUC1, CSF2RB, and STAT5A were highly differentially expressed in mammary gland compared to 15 other tissues. For nine of the other target regions, the most significant variants were in non-coding DNA. Genomic predictions in a third dairy breed (Australian Reds) using sequence variants in only these candidate genes were for some traits more accurate than genomic predictions from 632,003 common SNP on the Bovine HD array. The genes identified in this study are interesting candidates for improving milk production in cattle and could be investigated for novel biological mechanisms driving lactation traits in other mammals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle

Loading next page...
 
/lp/springer_journal/targeted-imputation-of-sequence-variants-and-gene-expression-profiling-oSS75W3bOS
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-015-9613-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial