Target-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy

Target-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy A novel, accurate and simple stereo particle image velocimetry (SPIV) technique utilising three cameras is presented. The key feature of the new technique is that there is no need of a separate calibration phase. The calibration data are measured concurrently with the PIV data by a third paraxial camera. This has the benefit of improving ease of use and reducing the time taken to obtain data. This third camera also provides useful velocity information, considerably improving the accuracy of the resolved 3D vectors. The additional redundancy provided by this third perspective in the stereo reconstruction equations suggests a least-squares approach to their solution. The least-squares process further improves the utility of the technique by means of the reconstruction residual. Detailed error analysis shows that this residual is an accurate predictor of resolved vector errors. The new technique is rigorously validated using both pure translation and rotation test cases. However, while this kind of validation is standard, it is shown that such validation is substantially flawed. The case of the well-known confined vortex breakdown flow is offered as an alternative validation. This flow is readily evaluated using CFD methods, allowing a detailed comparison of the data and evaluation of PIV errors in their entirety for this technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Target-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy

Loading next page...
 
/lp/springer_journal/target-free-stereo-piv-a-novel-technique-with-inherent-error-nK4SERdPKH
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0404-1
Publisher site
See Article on Publisher Site

Abstract

A novel, accurate and simple stereo particle image velocimetry (SPIV) technique utilising three cameras is presented. The key feature of the new technique is that there is no need of a separate calibration phase. The calibration data are measured concurrently with the PIV data by a third paraxial camera. This has the benefit of improving ease of use and reducing the time taken to obtain data. This third camera also provides useful velocity information, considerably improving the accuracy of the resolved 3D vectors. The additional redundancy provided by this third perspective in the stereo reconstruction equations suggests a least-squares approach to their solution. The least-squares process further improves the utility of the technique by means of the reconstruction residual. Detailed error analysis shows that this residual is an accurate predictor of resolved vector errors. The new technique is rigorously validated using both pure translation and rotation test cases. However, while this kind of validation is standard, it is shown that such validation is substantially flawed. The case of the well-known confined vortex breakdown flow is offered as an alternative validation. This flow is readily evaluated using CFD methods, allowing a detailed comparison of the data and evaluation of PIV errors in their entirety for this technique.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 19, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off