Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach

Tailoring of energy levels in... Density functional theory (DFT) was employed to investigate the role of fused thiophene and bridged thiophene π-linkers as well as acceptor unit fluorination in modifying the properties of dye sensitizers for dye-sensitized solar cells (DSSCs). A series of novel (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives were simulated using DFT and time-dependent density functional theory to calculate their electronic and optical properties, population analysis, global reactivity index and light harvesting efficiency. The results showed that dyes with bridged thiophene π-linker have narrower energy bandgap (E g) and longer absorption wavelength (λ max) than those with fused thiophene π-linker. Also, fluorination of the acceptor unit of the dyes enhanced the electron accepting ability of 2-cyano-2-pyran-4-ylidene-acetic acid by lowering the lowest unoccupied molecular orbital (LUMO) energy, which leads to lower E g, lower chemical hardness (η), and longer wavelength. Therefore, incorporation of fluorine atoms at the acceptor unit makes the conduction-band potential more favorable, leading to effective charge separation and charge transfer between donor and acceptor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach

Loading next page...
 
/lp/springer_journal/tailoring-of-energy-levels-in-2z-2-cyano-2-2-e-2-2-e-2-p-tolyl-vinyl-BRP3hGgMs2

References (52)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1007/s11164-016-2735-0
Publisher site
See Article on Publisher Site

Abstract

Density functional theory (DFT) was employed to investigate the role of fused thiophene and bridged thiophene π-linkers as well as acceptor unit fluorination in modifying the properties of dye sensitizers for dye-sensitized solar cells (DSSCs). A series of novel (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives were simulated using DFT and time-dependent density functional theory to calculate their electronic and optical properties, population analysis, global reactivity index and light harvesting efficiency. The results showed that dyes with bridged thiophene π-linker have narrower energy bandgap (E g) and longer absorption wavelength (λ max) than those with fused thiophene π-linker. Also, fluorination of the acceptor unit of the dyes enhanced the electron accepting ability of 2-cyano-2-pyran-4-ylidene-acetic acid by lowering the lowest unoccupied molecular orbital (LUMO) energy, which leads to lower E g, lower chemical hardness (η), and longer wavelength. Therefore, incorporation of fluorine atoms at the acceptor unit makes the conduction-band potential more favorable, leading to effective charge separation and charge transfer between donor and acceptor.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 29, 2016

There are no references for this article.