Systemic reduction of rice blast by inhibitors of antioxidant enzymes

Systemic reduction of rice blast by inhibitors of antioxidant enzymes Systemic acquired disease resistance (SAR) of plants may result from an oxidative burst in their tissues caused by both increased production of ROS and decreased antioxidant activity, in particular, enzymatic. Here we tested whether the exogenous inhibitors of superoxide dismutase (SOD) and catalase (CAT), respectively, diethyldithiocarbamate (DDC) and aminotriazole (AT), can systemically protect rice (Oryza sativa L.) from blast disease caused by fungus Magnaporthe oryzae Conouch et Kohn. The possible involvement of ROS in the protection was also examined. It was found that DDC did not affect fungal spore germination, and AT partially retarded it. Both compounds were non-toxic to plants and, when applied to the 4th leaf, greatly reduced the disease symptoms on the challenged 5th leaf. The protective action of AT apparently depended on the presence of hydrogen peroxide since the protection was diminished by a scavenger of H2O2 (dimethylthiourea) applied to the same leaf after AT, while exogenous H2O2, applied in place of AT, controlled the disease. Endogenous peroxide might accumulate due to inhibition of CAT that was actually observed in AT-treated leaves. Treatments of the 4th leaf with DDC or AT stimulated superoxide formation in the diffusate of the infected 5th leaf (as against treatment with water) pointing to the possible involvement of ROS in systemic defense responses. The same diffusates had enhanced fungitoxicities, which were reduced when antioxidants were added to the diffusate. Therefore, inhibitors of antioxidant enzymes systemically reduced rice blast, possibly via SAR. Both mechanisms of SAR induction (in the treated leaf) and expression (in the systemically protected leaf) might be mediated by ROS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Systemic reduction of rice blast by inhibitors of antioxidant enzymes

Loading next page...
 
/lp/springer_journal/systemic-reduction-of-rice-blast-by-inhibitors-of-antioxidant-enzymes-T0zepgH9w5
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715050052
Publisher site
See Article on Publisher Site

Abstract

Systemic acquired disease resistance (SAR) of plants may result from an oxidative burst in their tissues caused by both increased production of ROS and decreased antioxidant activity, in particular, enzymatic. Here we tested whether the exogenous inhibitors of superoxide dismutase (SOD) and catalase (CAT), respectively, diethyldithiocarbamate (DDC) and aminotriazole (AT), can systemically protect rice (Oryza sativa L.) from blast disease caused by fungus Magnaporthe oryzae Conouch et Kohn. The possible involvement of ROS in the protection was also examined. It was found that DDC did not affect fungal spore germination, and AT partially retarded it. Both compounds were non-toxic to plants and, when applied to the 4th leaf, greatly reduced the disease symptoms on the challenged 5th leaf. The protective action of AT apparently depended on the presence of hydrogen peroxide since the protection was diminished by a scavenger of H2O2 (dimethylthiourea) applied to the same leaf after AT, while exogenous H2O2, applied in place of AT, controlled the disease. Endogenous peroxide might accumulate due to inhibition of CAT that was actually observed in AT-treated leaves. Treatments of the 4th leaf with DDC or AT stimulated superoxide formation in the diffusate of the infected 5th leaf (as against treatment with water) pointing to the possible involvement of ROS in systemic defense responses. The same diffusates had enhanced fungitoxicities, which were reduced when antioxidants were added to the diffusate. Therefore, inhibitors of antioxidant enzymes systemically reduced rice blast, possibly via SAR. Both mechanisms of SAR induction (in the treated leaf) and expression (in the systemically protected leaf) might be mediated by ROS.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 14, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off