Systematic and deterministic graph minor embedding for Cartesian products of graphs

Systematic and deterministic graph minor embedding for Cartesian products of graphs The limited connectivity of current and next-generation quantum annealers motivates the need for efficient graph minor embedding methods. These methods allow non-native problems to be adapted to the target annealer’s architecture. The overhead of the widely used heuristic techniques is quickly proving to be a significant bottleneck for solving real-world applications. To alleviate this difficulty, we propose a systematic and deterministic embedding method, exploiting the structures of both the specific problem and the quantum annealer. We focus on the specific case of the Cartesian product of two complete graphs, a regular structure that occurs in many problems. We decompose the embedding problem by first embedding one of the factors of the Cartesian product in a repeatable pattern. The resulting simplified problem comprises the placement and connecting together of these copies to reach a valid solution. Aside from the obvious advantage of a systematic and deterministic approach with respect to speed and efficiency, the embeddings produced are easily scaled for larger processors and show desirable properties for the number of qubits used and the chain length distribution. We conclude by briefly addressing the problem of circumventing inoperable qubits by presenting possible extensions of our method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Systematic and deterministic graph minor embedding for Cartesian products of graphs

Loading next page...
 
/lp/springer_journal/systematic-and-deterministic-graph-minor-embedding-for-cartesian-VoQhlnaVGC
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1569-z
Publisher site
See Article on Publisher Site

Abstract

The limited connectivity of current and next-generation quantum annealers motivates the need for efficient graph minor embedding methods. These methods allow non-native problems to be adapted to the target annealer’s architecture. The overhead of the widely used heuristic techniques is quickly proving to be a significant bottleneck for solving real-world applications. To alleviate this difficulty, we propose a systematic and deterministic embedding method, exploiting the structures of both the specific problem and the quantum annealer. We focus on the specific case of the Cartesian product of two complete graphs, a regular structure that occurs in many problems. We decompose the embedding problem by first embedding one of the factors of the Cartesian product in a repeatable pattern. The resulting simplified problem comprises the placement and connecting together of these copies to reach a valid solution. Aside from the obvious advantage of a systematic and deterministic approach with respect to speed and efficiency, the embeddings produced are easily scaled for larger processors and show desirable properties for the number of qubits used and the chain length distribution. We conclude by briefly addressing the problem of circumventing inoperable qubits by presenting possible extensions of our method.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off