Synthetic, structural, and antimicrobial studies of organotin(IV) complexes of semicarbazone, thiosemicarbazone derived from 4-hydroxy-3-methoxybenzaldehyde

Synthetic, structural, and antimicrobial studies of organotin(IV) complexes of semicarbazone,... Reaction of dibutyltin dichloride, dimethyltin dichloride, and tributyltin chloride with ligands derived from thiosemicarbazone and semicarbazone leads to the formation of a new series of organotin(IV) complexes of general formula R2SnCl2·L and R3SnCl·L (where L ligands derived from the condensation of thiosemicarbazide and semicarbazide with 4-hydroxy-3-methoxybenzaldehyde). The authenticity of these ligands and their metal complexes have been established on the basis of elemental analysis, conductance measurements, molecular weight determinations, infrared, 1H NMR, 13C NMR, 119Sn NMR, and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a bidentate. An octahedral structure is proposed for the organotin(IV) complexes. The ligands and its metal complexes are screened for their antimicrobial activities against some Gram-positive and Gram-negative bacteria, and fungus. The studies demonstrated that metalation can increase the antimicrobial activity rather than the free ligands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthetic, structural, and antimicrobial studies of organotin(IV) complexes of semicarbazone, thiosemicarbazone derived from 4-hydroxy-3-methoxybenzaldehyde

Loading next page...
 
/lp/springer_journal/synthetic-structural-and-antimicrobial-studies-of-organotin-iv-Oa4QDm5W3L
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0325-8
Publisher site
See Article on Publisher Site

Abstract

Reaction of dibutyltin dichloride, dimethyltin dichloride, and tributyltin chloride with ligands derived from thiosemicarbazone and semicarbazone leads to the formation of a new series of organotin(IV) complexes of general formula R2SnCl2·L and R3SnCl·L (where L ligands derived from the condensation of thiosemicarbazide and semicarbazide with 4-hydroxy-3-methoxybenzaldehyde). The authenticity of these ligands and their metal complexes have been established on the basis of elemental analysis, conductance measurements, molecular weight determinations, infrared, 1H NMR, 13C NMR, 119Sn NMR, and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a bidentate. An octahedral structure is proposed for the organotin(IV) complexes. The ligands and its metal complexes are screened for their antimicrobial activities against some Gram-positive and Gram-negative bacteria, and fungus. The studies demonstrated that metalation can increase the antimicrobial activity rather than the free ligands.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 26, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off