Synthetic and mechanistic investigation of piperonyl butoxide from dihydrosafrole

Synthetic and mechanistic investigation of piperonyl butoxide from dihydrosafrole Piperonyl butoxide (PBO) 1 was prepared via the successive chloromethylation and etherification of dihydrosafrole 3. In this work, during the chloromethylation of 3, several by-products such as 5 (the isomer of chloromethyldihydrosafrole 4), 6-propylpiperonyl alcohol 6, bis(chloromethyl)-dihydrosafrole 7 and 8, bis(2-propyl-4,5-methylenedioxyphenyl)methane 9 and di(2-propyl-4,5-methy lene-dioxybenzyl)ether 10 were found. However, it was found that 5, 6, 7, and 8 could undergo a further reaction to the final product (PBO), rather than its derivatives, though the by-products 9 and 10 still existed. Based on these results, the plausible mechanism of the chloromethylation and etherification of 3 was proposed. Furthermore, the reliability of the plausible mechanism was verified by quantum chemical calculations using DFT. In addition, the final product (PBO) was produced with a high selectivity and yield by reducing the by-products 9 and 10. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthetic and mechanistic investigation of piperonyl butoxide from dihydrosafrole

Loading next page...
 
/lp/springer_journal/synthetic-and-mechanistic-investigation-of-piperonyl-butoxide-from-Xj70002Mfm
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0333-8
Publisher site
See Article on Publisher Site

Abstract

Piperonyl butoxide (PBO) 1 was prepared via the successive chloromethylation and etherification of dihydrosafrole 3. In this work, during the chloromethylation of 3, several by-products such as 5 (the isomer of chloromethyldihydrosafrole 4), 6-propylpiperonyl alcohol 6, bis(chloromethyl)-dihydrosafrole 7 and 8, bis(2-propyl-4,5-methylenedioxyphenyl)methane 9 and di(2-propyl-4,5-methy lene-dioxybenzyl)ether 10 were found. However, it was found that 5, 6, 7, and 8 could undergo a further reaction to the final product (PBO), rather than its derivatives, though the by-products 9 and 10 still existed. Based on these results, the plausible mechanism of the chloromethylation and etherification of 3 was proposed. Furthermore, the reliability of the plausible mechanism was verified by quantum chemical calculations using DFT. In addition, the final product (PBO) was produced with a high selectivity and yield by reducing the by-products 9 and 10.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off