Synthesis, X-ray Diffraction Characterization, Mössbauer Spectroscopy, and Dielectric Properties of Solid Solutions in the PbFe2/3W1/3O3–PbSc2/3W1/3O3 System

Synthesis, X-ray Diffraction Characterization, Mössbauer Spectroscopy, and Dielectric Properties... Ceramic Pb(Fe1–x Sc x )2/3W1/3O3 samples with 0 ≤ x ≤ 1 have been prepared and characterized by X-ray diffraction, Mössbauer spectroscopy, and dielectric and pyroelectric measurements. The stoichiometry ranges of the perovskite solid solutions in this system have been identified, their structural parameters have been determined, and their dielectric permittivity, dielectric loss tangent, resistivity, and thermally stimulated depolarization current have been measured as functions of temperature. The composition dependences of the dielectric properties for the solid solutions have been obtained. The solid solutions have been shown to exhibit ferroelectric relaxor properties, with a well-defined maximum in their permittivity in the range 180–250 K. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inorganic Materials Springer Journals

Synthesis, X-ray Diffraction Characterization, Mössbauer Spectroscopy, and Dielectric Properties of Solid Solutions in the PbFe2/3W1/3O3–PbSc2/3W1/3O3 System

Loading next page...
 
/lp/springer_journal/synthesis-x-ray-diffraction-characterization-m-ssbauer-spectroscopy-ZKZ9cjQJqT
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Chemistry; Inorganic Chemistry; Industrial Chemistry/Chemical Engineering; Materials Science, general
ISSN
0020-1685
eISSN
1608-3172
D.O.I.
10.1134/S0020168518030056
Publisher site
See Article on Publisher Site

Abstract

Ceramic Pb(Fe1–x Sc x )2/3W1/3O3 samples with 0 ≤ x ≤ 1 have been prepared and characterized by X-ray diffraction, Mössbauer spectroscopy, and dielectric and pyroelectric measurements. The stoichiometry ranges of the perovskite solid solutions in this system have been identified, their structural parameters have been determined, and their dielectric permittivity, dielectric loss tangent, resistivity, and thermally stimulated depolarization current have been measured as functions of temperature. The composition dependences of the dielectric properties for the solid solutions have been obtained. The solid solutions have been shown to exhibit ferroelectric relaxor properties, with a well-defined maximum in their permittivity in the range 180–250 K.

Journal

Inorganic MaterialsSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off