Synthesis of ZnO nanoparticles and its application in photocatalytic degradation of LABS by the trial-and-error and Taguchi methods

Synthesis of ZnO nanoparticles and its application in photocatalytic degradation of LABS by the... In the work ZnO nanoparticles were prepared by sol-gel method. The catalyst was characterized by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM). The photocatalytic oxidation of anionic surfactant in detergent industries was studied using ZnO nanoparticles with diameter size 20 nm as catalyst on irradiation with UV light. Analysis of kinetic showed that the amount of surfactant photocatalytic degradation can be fitted with pseudo-first-order model and studied photochemical elimination of Linear alkyl benzene sulfonates by the trial-and-error and Taguchi methods. Our experimental design consisted of testing five factors, i.e. dosage of K2S2O8, concentration of surfactant, amount of ZnO, irradiation time, and initial pH. The results showed that photocatalytic degradation of linear alkyl benzene sulfonates was strongly influenced by these parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Synthesis of ZnO nanoparticles and its application in photocatalytic degradation of LABS by the trial-and-error and Taguchi methods

Loading next page...
 
/lp/springer_journal/synthesis-of-zno-nanoparticles-and-its-application-in-photocatalytic-XBYrydcN31
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216050220
Publisher site
See Article on Publisher Site

Abstract

In the work ZnO nanoparticles were prepared by sol-gel method. The catalyst was characterized by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM). The photocatalytic oxidation of anionic surfactant in detergent industries was studied using ZnO nanoparticles with diameter size 20 nm as catalyst on irradiation with UV light. Analysis of kinetic showed that the amount of surfactant photocatalytic degradation can be fitted with pseudo-first-order model and studied photochemical elimination of Linear alkyl benzene sulfonates by the trial-and-error and Taguchi methods. Our experimental design consisted of testing five factors, i.e. dosage of K2S2O8, concentration of surfactant, amount of ZnO, irradiation time, and initial pH. The results showed that photocatalytic degradation of linear alkyl benzene sulfonates was strongly influenced by these parameters.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Aug 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off