Synthesis of TiO2/SiO2 nanoparticles in a water-in-carbon-dioxide microemulsion and their photocatalytic activity

Synthesis of TiO2/SiO2 nanoparticles in a water-in-carbon-dioxide microemulsion and their... TiO2 and TiO2/SiO2 nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide and tetraethylorhtosilicate in water-in-carbon-dioxide microemulsion using ammonium carboxylate perfluoro-polyether (PFPE-NH4) as a surfactant. These particles were characterized by HRTEM, XRD, FT-IR, TGA and DTA. The particles calcined at 500°C were identified as a nanocrystalline anatase phase, regardless of the titanium tetraisopropoxide/teraethylorthosilicate (TTIP/TEOS) molar ratio. The crystallite size decreased with an increase of the silica content. From FT-IR analysis, the band for Ti-O-Si vibration was observed and the band intensity for Si-O-Si vibration increased with an increase of the silica content. The micrographs of HRTEM showed that the TiO2/SiO2 nanoparticles had a spherical morphology with a narrow size distribution and the lattice fringe was 0.35 nm, which corresponds to the lattice spacing of (101) plane in the anatase phase. In addition, TiO2/SiO2 particles showed higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (80:20) particles showed the highest activity on the photocatalytic decomposition of p-nitrophenol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis of TiO2/SiO2 nanoparticles in a water-in-carbon-dioxide microemulsion and their photocatalytic activity

Loading next page...
 
/lp/springer_journal/synthesis-of-tio2-sio2-nanoparticles-in-a-water-in-carbon-dioxide-L0IXDMQALe
Publisher
Springer Journals
Copyright
Copyright © 2005 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/1568567053956626
Publisher site
See Article on Publisher Site

Abstract

TiO2 and TiO2/SiO2 nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide and tetraethylorhtosilicate in water-in-carbon-dioxide microemulsion using ammonium carboxylate perfluoro-polyether (PFPE-NH4) as a surfactant. These particles were characterized by HRTEM, XRD, FT-IR, TGA and DTA. The particles calcined at 500°C were identified as a nanocrystalline anatase phase, regardless of the titanium tetraisopropoxide/teraethylorthosilicate (TTIP/TEOS) molar ratio. The crystallite size decreased with an increase of the silica content. From FT-IR analysis, the band for Ti-O-Si vibration was observed and the band intensity for Si-O-Si vibration increased with an increase of the silica content. The micrographs of HRTEM showed that the TiO2/SiO2 nanoparticles had a spherical morphology with a narrow size distribution and the lattice fringe was 0.35 nm, which corresponds to the lattice spacing of (101) plane in the anatase phase. In addition, TiO2/SiO2 particles showed higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (80:20) particles showed the highest activity on the photocatalytic decomposition of p-nitrophenol.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off