Synthesis of TiO2 hollow spheres using binary ionic liquids as an electrocatalyst

Synthesis of TiO2 hollow spheres using binary ionic liquids as an electrocatalyst Titanium dioxide (TiO2 titania) hollow sphere was simply synthesized using various ionic liquids (ILs). The shape and size of TiO2 particles were significantly different with the composition of ILs. This is mainly attributed to the interaction between organic solvent and IL at the interface leading to the formation of sphere. Among the binary ILs, [Bmim][BF4] + [Omim][PF6], [Bmim][BF4] + [Omim][PF6], and [Bmim][PF6] + [Hmim][PF6] were useful to prepare TiO2 nanostructures with high surface area and anatase phase. Especially, [Bmim][BF4] + [Omim][PF6] was the most effective IL to synthesize an anatase TiO2 hollow sphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis of TiO2 hollow spheres using binary ionic liquids as an electrocatalyst

Loading next page...
 
/lp/springer_journal/synthesis-of-tio2-hollow-spheres-using-binary-ionic-liquids-as-an-N97Za000NF
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Physical Chemistry; Inorganic Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0400-1
Publisher site
See Article on Publisher Site

Abstract

Titanium dioxide (TiO2 titania) hollow sphere was simply synthesized using various ionic liquids (ILs). The shape and size of TiO2 particles were significantly different with the composition of ILs. This is mainly attributed to the interaction between organic solvent and IL at the interface leading to the formation of sphere. Among the binary ILs, [Bmim][BF4] + [Omim][PF6], [Bmim][BF4] + [Omim][PF6], and [Bmim][PF6] + [Hmim][PF6] were useful to prepare TiO2 nanostructures with high surface area and anatase phase. Especially, [Bmim][BF4] + [Omim][PF6] was the most effective IL to synthesize an anatase TiO2 hollow sphere.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off