Synthesis of sodium titanium phosphate at ultra-low temperature

Synthesis of sodium titanium phosphate at ultra-low temperature Powders of the Nasicon material NaTi2(PO4)3 were directly synthesized at ultra-low temperature. NaTi2(PO4)3 was obtained by mixing the initial reagents titanium hydroxide, 85 % H3PO4, and NaH2PO4·2H2O at 85 °C for 3.5 h or at 125 °C for 1.5 h. The raw materials and synthesized products were characterized for purity, crystal structure, particle size, and powder morphology by thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), and UV–visible diffuse reflectance spectroscopy. XRD results revealed that NaTi2(PO4)3 powders with rhombohedral crystal structure were synthesized at 85 and 125 °C. SEM patterns showed that the as-prepared products were agglomerated and that each of the agglomerations consisted of many small grains 50–80 nm in diameter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis of sodium titanium phosphate at ultra-low temperature

Loading next page...
 
/lp/springer_journal/synthesis-of-sodium-titanium-phosphate-at-ultra-low-temperature-mXKl0Z7guY
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0720-9
Publisher site
See Article on Publisher Site

Abstract

Powders of the Nasicon material NaTi2(PO4)3 were directly synthesized at ultra-low temperature. NaTi2(PO4)3 was obtained by mixing the initial reagents titanium hydroxide, 85 % H3PO4, and NaH2PO4·2H2O at 85 °C for 3.5 h or at 125 °C for 1.5 h. The raw materials and synthesized products were characterized for purity, crystal structure, particle size, and powder morphology by thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), and UV–visible diffuse reflectance spectroscopy. XRD results revealed that NaTi2(PO4)3 powders with rhombohedral crystal structure were synthesized at 85 and 125 °C. SEM patterns showed that the as-prepared products were agglomerated and that each of the agglomerations consisted of many small grains 50–80 nm in diameter.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off