Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems

Synthesis of nanopowders and physicochemical properties of ceramic matrices of the... Sol-gel method was used to synthesize nanosize powders in the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems. Dense ceramic samples with high microhardness (up to 25 GPa) were formed from these powders by sintering at temperatures of up to 1600°C. The isomorphic capacity of the monoclinic LaPO4 matrix for the second component (yttrium or holmium) simulating radioactive nuclides of the actinide-rare-earth fraction was found to be high. The composites are stable in aqueous solutions, which is indicated by the low concentration of lanthanum and yttrium ions during leaching test (~10–7 g L–1). The results obtained in the study can be used to develop new high-efficiency ceramic matrices for solidification of the actinide-rare-earth fraction of liquid wastes formed in processing of the spent nuclear fuel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems

Loading next page...
 
/lp/springer_journal/synthesis-of-nanopowders-and-physicochemical-properties-of-ceramic-42px0OFdPc
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217010050
Publisher site
See Article on Publisher Site

Abstract

Sol-gel method was used to synthesize nanosize powders in the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems. Dense ceramic samples with high microhardness (up to 25 GPa) were formed from these powders by sintering at temperatures of up to 1600°C. The isomorphic capacity of the monoclinic LaPO4 matrix for the second component (yttrium or holmium) simulating radioactive nuclides of the actinide-rare-earth fraction was found to be high. The composites are stable in aqueous solutions, which is indicated by the low concentration of lanthanum and yttrium ions during leaching test (~10–7 g L–1). The results obtained in the study can be used to develop new high-efficiency ceramic matrices for solidification of the actinide-rare-earth fraction of liquid wastes formed in processing of the spent nuclear fuel.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off