Synthesis of nano-CuI and its catalytic activity in the thermal decomposition of ammonium perchlorate

Synthesis of nano-CuI and its catalytic activity in the thermal decomposition of ammonium... Nano-CuI was fabricated by an element-direct-reaction route at 40 °C in acetonitrile, and used as a catalyst in the thermal decomposition of ammonium perchlorate. The effects of polyvinyl pirrolidone (PVP) as an additive in the preparation of the catalyst and the addition amount of the catalyst in thermal decomposition reaction on the catalytic activity were investigated. Meanwhile, the morphologies and composition of the catalyst were also identified by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that nano-CuI can remarkably decrease the higher decomposition temperature of ammonium perchlorate by more than 100 °C, and that the temperature can be further reduced by using the nano-CuI catalyst with PVP as an additive in preparation. In addition, smaller crystallite size and increasing addition amount of nano-CuI in the thermal decomposition are favorable for improving its catalytic activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis of nano-CuI and its catalytic activity in the thermal decomposition of ammonium perchlorate

Loading next page...
 
/lp/springer_journal/synthesis-of-nano-cui-and-its-catalytic-activity-in-the-thermal-K209PTnefZ
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1497-1
Publisher site
See Article on Publisher Site

Abstract

Nano-CuI was fabricated by an element-direct-reaction route at 40 °C in acetonitrile, and used as a catalyst in the thermal decomposition of ammonium perchlorate. The effects of polyvinyl pirrolidone (PVP) as an additive in the preparation of the catalyst and the addition amount of the catalyst in thermal decomposition reaction on the catalytic activity were investigated. Meanwhile, the morphologies and composition of the catalyst were also identified by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that nano-CuI can remarkably decrease the higher decomposition temperature of ammonium perchlorate by more than 100 °C, and that the temperature can be further reduced by using the nano-CuI catalyst with PVP as an additive in preparation. In addition, smaller crystallite size and increasing addition amount of nano-CuI in the thermal decomposition are favorable for improving its catalytic activity.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 11, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off