Synthesis of isoniazid substituted pyrene (PINHy), and investigation of its optical and electrochemical features as tunable/flexible OLEDs

Synthesis of isoniazid substituted pyrene (PINHy), and investigation of its optical and... A new pyrene derivative substituted with isoniazid was synthesized via a simple Schiff base formation reaction, and its structure was characterized by using 1H-NMR, 13C-NMR, APT-NMR and elemental analysis techniques. Isoniazid-substituted pyrene (PINHy) was used as an emitting layer (EML) in the fabrication of new organic light-emitting diodes (OLEDs) consisted of bilayer or quaternary-layer system. We only used a hole transfer layer (HTL) and EML for the construction of the OLED device with bilayer system, while the OLED device with quaternary-layer system contained a combination of hole injection layer, HTL, EML and electron transfer layer. The optical and electrochemical properties of these materials were also examined. The results indicated that the OLED devices with quaternary-layer and bilayer system using isoniazid-substituted pyrene (PINHy) as EML showed efficient electroluminescent properties with the brightness of 906 and 864 cd/m2 at 11 V, the power efficiencies of 2.8 and 2.47 Im/W, and the external quantum efficiencies of 7.3 and 8.1% at 6.0 V, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Synthesis of isoniazid substituted pyrene (PINHy), and investigation of its optical and electrochemical features as tunable/flexible OLEDs

Loading next page...
 
/lp/springer_journal/synthesis-of-isoniazid-substituted-pyrene-pinhy-and-investigation-of-zOH9kenr8o
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7142-9
Publisher site
See Article on Publisher Site

Abstract

A new pyrene derivative substituted with isoniazid was synthesized via a simple Schiff base formation reaction, and its structure was characterized by using 1H-NMR, 13C-NMR, APT-NMR and elemental analysis techniques. Isoniazid-substituted pyrene (PINHy) was used as an emitting layer (EML) in the fabrication of new organic light-emitting diodes (OLEDs) consisted of bilayer or quaternary-layer system. We only used a hole transfer layer (HTL) and EML for the construction of the OLED device with bilayer system, while the OLED device with quaternary-layer system contained a combination of hole injection layer, HTL, EML and electron transfer layer. The optical and electrochemical properties of these materials were also examined. The results indicated that the OLED devices with quaternary-layer and bilayer system using isoniazid-substituted pyrene (PINHy) as EML showed efficient electroluminescent properties with the brightness of 906 and 864 cd/m2 at 11 V, the power efficiencies of 2.8 and 2.47 Im/W, and the external quantum efficiencies of 7.3 and 8.1% at 6.0 V, respectively.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off