Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in... Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge–discharge cycles at a current density of 200 mA/g, showing good cycling performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

Loading next page...
 
/lp/springer_journal/synthesis-of-homogeneous-camoo4-microspheres-with-nanopits-for-high-7v1UKD0CUz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-018-1689-z
Publisher site
See Article on Publisher Site

Abstract

Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge–discharge cycles at a current density of 200 mA/g, showing good cycling performance.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Feb 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off