Synthesis of Co3O4-Bi2O3 using microwave-assisted method as the peroxymonosulfate activator for elimination of bisphenol A

Synthesis of Co3O4-Bi2O3 using microwave-assisted method as the peroxymonosulfate activator for... In this work, Co3O4-Bi2O3 was successfully synthesized using a microwave-assisted method [Co3O4-Bi2O3(MW)] and employed as a peroxymonosulfate (PMS) activator for bisphenol A removal. A reference catalyst was prepared using the same preparation conditions but different heating mode and labeled as Co3O4-Bi2O3(CH). The series of Co3O4-Bi2O3 was characterized using XRD, SEM, and N2 adsorption to detect their crystallinity, morphology, and surface area, among others. Results indicated that both microwave and calcination significantly affected the characteristic and catalytic activity of the catalyst. Moreover, the microwave-irradiated catalyst calcined at 300 °C showed higher catalytic activity and mineralization percentage for BPA degradation than the conventionally heated catalyst calcined at the same temperature. Microwave temperature and microwave time of the proposed microwave-assisted method were also investigated. Compared with other catalysts, the present catalyst showed considerably superior preparation time and degradation efficiency. This study broadens a new horizon for advanced oxidation process using a PMS activator. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Synthesis of Co3O4-Bi2O3 using microwave-assisted method as the peroxymonosulfate activator for elimination of bisphenol A

Loading next page...
 
/lp/springer_journal/synthesis-of-co3o4-bi2o3-using-microwave-assisted-method-as-the-t1tj0m2AZ5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0871-8
Publisher site
See Article on Publisher Site

Abstract

In this work, Co3O4-Bi2O3 was successfully synthesized using a microwave-assisted method [Co3O4-Bi2O3(MW)] and employed as a peroxymonosulfate (PMS) activator for bisphenol A removal. A reference catalyst was prepared using the same preparation conditions but different heating mode and labeled as Co3O4-Bi2O3(CH). The series of Co3O4-Bi2O3 was characterized using XRD, SEM, and N2 adsorption to detect their crystallinity, morphology, and surface area, among others. Results indicated that both microwave and calcination significantly affected the characteristic and catalytic activity of the catalyst. Moreover, the microwave-irradiated catalyst calcined at 300 °C showed higher catalytic activity and mineralization percentage for BPA degradation than the conventionally heated catalyst calcined at the same temperature. Microwave temperature and microwave time of the proposed microwave-assisted method were also investigated. Compared with other catalysts, the present catalyst showed considerably superior preparation time and degradation efficiency. This study broadens a new horizon for advanced oxidation process using a PMS activator.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off