Synthesis of CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nano-particles via a combustion pathway and study of their optical properties

Synthesis of CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nano-particles via a combustion pathway and... Use of citric acid as a chelating agent and fuel, ammonium nitrate as fuel, boric acid as flux material and silica as supports, CaWO4:Ln3+@SiO2 (Ln = Er and Tm) nanoparticles were synthesized via a combustion reaction at 800 °C. Characterization of the samples was performed by X-ray diffractometer (XRD), reflectance UV–Vis spectrophotometer, fluorescence spectrophotometer (PL) and transmission electron microscope (TEM). XRD patterns showed that tetragonal crystalline structure of scheelite and silica supports were formed, and that the formation of a silica support could enhance the luminescence intensity of CaWO4:Ln3+. The reflectance UV–Vis and PL spectra indicated the broad absorption band of WO4 2− groups about 240 nm, the WO4 2− wide excitation band with maximum at 240 nm, a broad emission band of WO4 2− with maximum about 420 nm, and characteristic emissions of Ln3+ ions. According to the TEM analysis, CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nanoparticles have almost the same morphology with average particle sizes about 50 nm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis of CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nano-particles via a combustion pathway and study of their optical properties

Loading next page...
 
/lp/springer_journal/synthesis-of-cawo4-er3-sio2-and-cawo4-tm3-sio2-nano-particles-via-a-syNZBpajwa
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1098-z
Publisher site
See Article on Publisher Site

Abstract

Use of citric acid as a chelating agent and fuel, ammonium nitrate as fuel, boric acid as flux material and silica as supports, CaWO4:Ln3+@SiO2 (Ln = Er and Tm) nanoparticles were synthesized via a combustion reaction at 800 °C. Characterization of the samples was performed by X-ray diffractometer (XRD), reflectance UV–Vis spectrophotometer, fluorescence spectrophotometer (PL) and transmission electron microscope (TEM). XRD patterns showed that tetragonal crystalline structure of scheelite and silica supports were formed, and that the formation of a silica support could enhance the luminescence intensity of CaWO4:Ln3+. The reflectance UV–Vis and PL spectra indicated the broad absorption band of WO4 2− groups about 240 nm, the WO4 2− wide excitation band with maximum at 240 nm, a broad emission band of WO4 2− with maximum about 420 nm, and characteristic emissions of Ln3+ ions. According to the TEM analysis, CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nanoparticles have almost the same morphology with average particle sizes about 50 nm.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 17, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off