Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates

Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition... Metal dithiocarbamate complexes of Co(II) [1], Cu(II) [2], Mn(II) [3], Cr(III) [4], and Pd(II) [5] have been synthesized using sodium N-ethyl-N-phenyldithiocarbamate (NaL). The complexes were characterized by elemental analyses, FTIR and UV–vis spectroscopic techniques, magnetic moment, molar conductance and thermal analyses (TGA and DSC). The infrared spectra indicated the coordination of dithiocarbamate through the two sulphur atoms in a symmetrical bidentate fashion. The thermal behavior of these complexes showed that the hydrated complexes lost water molecules in the first step, followed by decomposition of the ligand molecules in the final steps. Mass loss considerations at these final decomposition steps indicate conversion of the complexes to sulphides. The antimicrobial potentials of the complexes were evaluated against some selected bacteria strains (Escherichia coli, Pseudomonas aureginosa, Salmonella typhi and Staphylococcus aureus) and fungi organisms (Aspergillus flavus and Fasiparium oxysporium). The compounds showed a broad spectrum of fungicidal and bactericidal activities which exceeds that of the control drugs at a 100 μg/mL concentration. The antioxidant properties of the ligand and its Cu(II) complex were evaluated in vitro using DPPH assay, and the complex was found to exhibit better radical scavenging ability than the free ligand. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates

Loading next page...
 
/lp/springer_journal/synthesis-characterization-thermal-antimicrobial-and-antioxidant-RLyvZcGGkM
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2709-2
Publisher site
See Article on Publisher Site

Abstract

Metal dithiocarbamate complexes of Co(II) [1], Cu(II) [2], Mn(II) [3], Cr(III) [4], and Pd(II) [5] have been synthesized using sodium N-ethyl-N-phenyldithiocarbamate (NaL). The complexes were characterized by elemental analyses, FTIR and UV–vis spectroscopic techniques, magnetic moment, molar conductance and thermal analyses (TGA and DSC). The infrared spectra indicated the coordination of dithiocarbamate through the two sulphur atoms in a symmetrical bidentate fashion. The thermal behavior of these complexes showed that the hydrated complexes lost water molecules in the first step, followed by decomposition of the ligand molecules in the final steps. Mass loss considerations at these final decomposition steps indicate conversion of the complexes to sulphides. The antimicrobial potentials of the complexes were evaluated against some selected bacteria strains (Escherichia coli, Pseudomonas aureginosa, Salmonella typhi and Staphylococcus aureus) and fungi organisms (Aspergillus flavus and Fasiparium oxysporium). The compounds showed a broad spectrum of fungicidal and bactericidal activities which exceeds that of the control drugs at a 100 μg/mL concentration. The antioxidant properties of the ligand and its Cu(II) complex were evaluated in vitro using DPPH assay, and the complex was found to exhibit better radical scavenging ability than the free ligand.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off