Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates

Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition... Metal dithiocarbamate complexes of Co(II) [1], Cu(II) [2], Mn(II) [3], Cr(III) [4], and Pd(II) [5] have been synthesized using sodium N-ethyl-N-phenyldithiocarbamate (NaL). The complexes were characterized by elemental analyses, FTIR and UV–vis spectroscopic techniques, magnetic moment, molar conductance and thermal analyses (TGA and DSC). The infrared spectra indicated the coordination of dithiocarbamate through the two sulphur atoms in a symmetrical bidentate fashion. The thermal behavior of these complexes showed that the hydrated complexes lost water molecules in the first step, followed by decomposition of the ligand molecules in the final steps. Mass loss considerations at these final decomposition steps indicate conversion of the complexes to sulphides. The antimicrobial potentials of the complexes were evaluated against some selected bacteria strains (Escherichia coli, Pseudomonas aureginosa, Salmonella typhi and Staphylococcus aureus) and fungi organisms (Aspergillus flavus and Fasiparium oxysporium). The compounds showed a broad spectrum of fungicidal and bactericidal activities which exceeds that of the control drugs at a 100 μg/mL concentration. The antioxidant properties of the ligand and its Cu(II) complex were evaluated in vitro using DPPH assay, and the complex was found to exhibit better radical scavenging ability than the free ligand. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates

Loading next page...
 
/lp/springer_journal/synthesis-characterization-thermal-antimicrobial-and-antioxidant-RLyvZcGGkM
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2709-2
Publisher site
See Article on Publisher Site

Abstract

Metal dithiocarbamate complexes of Co(II) [1], Cu(II) [2], Mn(II) [3], Cr(III) [4], and Pd(II) [5] have been synthesized using sodium N-ethyl-N-phenyldithiocarbamate (NaL). The complexes were characterized by elemental analyses, FTIR and UV–vis spectroscopic techniques, magnetic moment, molar conductance and thermal analyses (TGA and DSC). The infrared spectra indicated the coordination of dithiocarbamate through the two sulphur atoms in a symmetrical bidentate fashion. The thermal behavior of these complexes showed that the hydrated complexes lost water molecules in the first step, followed by decomposition of the ligand molecules in the final steps. Mass loss considerations at these final decomposition steps indicate conversion of the complexes to sulphides. The antimicrobial potentials of the complexes were evaluated against some selected bacteria strains (Escherichia coli, Pseudomonas aureginosa, Salmonella typhi and Staphylococcus aureus) and fungi organisms (Aspergillus flavus and Fasiparium oxysporium). The compounds showed a broad spectrum of fungicidal and bactericidal activities which exceeds that of the control drugs at a 100 μg/mL concentration. The antioxidant properties of the ligand and its Cu(II) complex were evaluated in vitro using DPPH assay, and the complex was found to exhibit better radical scavenging ability than the free ligand.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off