Synthesis, characterization, and non-isothermal curing kinetics of two silicon-containing arylacetylenic monomers

Synthesis, characterization, and non-isothermal curing kinetics of two silicon-containing... Vinyltri(phenylethynyl)silane ((ph–C≡C)3–Si–C=CH2; VTPES) and phenyltri(phenylethynyl)silane ((ph–C≡C)3–Si–ph; PTPES) were synthesized by Grignard reaction. Their molecular structures were characterized by means of 1H NMR, 13C NMR, 29Si NMR, and FT-IR spectroscopy. Their nonisothermal thermal curing processes were characterized by DSC, and the corresponding kinetic data, for example activation energy (E), pre-exponential factor (A), and the order of the reaction (n), were obtained by the Kissinger method. The results showed that the melting points of VTPES and PTPES were 84 and 116 °C, respectively. Their curing reaction rates were consistent with first-order kinetic equations. VTPES monomer had a lower activation energy and curing temperature as a result of coordination between reactive groups. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis, characterization, and non-isothermal curing kinetics of two silicon-containing arylacetylenic monomers

Loading next page...
 
/lp/springer_journal/synthesis-characterization-and-non-isothermal-curing-kinetics-of-two-yHymMBk0eR
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0291-1
Publisher site
See Article on Publisher Site

Abstract

Vinyltri(phenylethynyl)silane ((ph–C≡C)3–Si–C=CH2; VTPES) and phenyltri(phenylethynyl)silane ((ph–C≡C)3–Si–ph; PTPES) were synthesized by Grignard reaction. Their molecular structures were characterized by means of 1H NMR, 13C NMR, 29Si NMR, and FT-IR spectroscopy. Their nonisothermal thermal curing processes were characterized by DSC, and the corresponding kinetic data, for example activation energy (E), pre-exponential factor (A), and the order of the reaction (n), were obtained by the Kissinger method. The results showed that the melting points of VTPES and PTPES were 84 and 116 °C, respectively. Their curing reaction rates were consistent with first-order kinetic equations. VTPES monomer had a lower activation energy and curing temperature as a result of coordination between reactive groups.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 6, 2011

References

  • Fiber reinforced plastics using a new heat-resistant silicon based polymer
    Itoh, M; Inoue, K; Hirayama, N
  • Hydrosilylation of diynes as a route to functional polymers delocalized through silicon
    Sanchez, JC; Trogler, WC
  • Dehydrogenative cross-coupling reactions between phenylsilane and ethynylbenzene in the presence of metal hydrides
    Ishikawa, J; Inoue, K; Itoh, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off