Synthesis, characterization and electrochemical properties of Co3O4 nanostructures by using cobalt hydroxide as a precursor

Synthesis, characterization and electrochemical properties of Co3O4 nanostructures by using... Cobalt hydroxide nanoparticles were prepared through the use of a two-step reaction, template- and surfactant-free, using cobalt chloride with ammonia solution at room temperature. The prepared materials were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The obtained cobalt hydroxide nanoparticles can be easily converted to cobalt oxide nanoparticles by calcining at 500 °C for 2 h. The growth mechanism of the synthesized nanoparticles are also discussed in detail based on the experimental results. Cobalt oxide nanoparticles were immobilized on the surface of a glassy carbon electrode (GCE) and applied to construct an electrochemical sensor. The obtained cobalt oxide-modified GCE showed one pair of redox peaks and high catalytic activity for the oxidation of Levodopa and Serotonin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis, characterization and electrochemical properties of Co3O4 nanostructures by using cobalt hydroxide as a precursor

Loading next page...
 
/lp/springer_journal/synthesis-characterization-and-electrochemical-properties-of-co3o4-RrGv6L4hyX
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1535-7
Publisher site
See Article on Publisher Site

Abstract

Cobalt hydroxide nanoparticles were prepared through the use of a two-step reaction, template- and surfactant-free, using cobalt chloride with ammonia solution at room temperature. The prepared materials were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The obtained cobalt hydroxide nanoparticles can be easily converted to cobalt oxide nanoparticles by calcining at 500 °C for 2 h. The growth mechanism of the synthesized nanoparticles are also discussed in detail based on the experimental results. Cobalt oxide nanoparticles were immobilized on the surface of a glassy carbon electrode (GCE) and applied to construct an electrochemical sensor. The obtained cobalt oxide-modified GCE showed one pair of redox peaks and high catalytic activity for the oxidation of Levodopa and Serotonin.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 28, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off