Synthesis, characterization and application of pH-sensitive CoFe2O4/reduced graphene oxide (RGO) nanocomposite in a circulated photocatalytic reactor for Reactive Red 141 removal of wastewaters

Synthesis, characterization and application of pH-sensitive CoFe2O4/reduced graphene oxide (RGO)... In the present study, CoFe2O4/reduced graphene oxide nanocomposite (CoFe2O4/RGO) has been synthesized, characterized and applied as a photocatalyst for Reactive Red 141 dye removal from colored wastewaters. In order to control the size and reduction of prepared CoFe2O4/RGO, a combination of co-precipitation and hydrothermal methods were employed. NH3 was used as a pH controlling and complexing agent. The nanocomposite was characterized and its properties were evaluated using FTIR, XRD, VSM, FESEM, TEM, TOC, Zeta potential, PL and UV–Vis spectroscopy. The TEM image shows that a well-separated low layer or a single layer reduced graphene oxide and is decorated during nanocomposite synthesis simultaneously with the synthesis, growth and uniform distribution of nanoparticles of 10 nm size. The measurement of magnetic properties of the synthesized nanocomposite shows that the nanocomposites are easily removable from the aqueous medium by applying a magnetic field. The photocatalytic performance was investigated on the degradation of aqueous Reactive Red 141 dye. Results of Zeta potential analysis confirm that photocatalytic performance is independent of surface charge and is related to the position of the valence band of OH−/OH· couples. Therefore, the photocatalyst could be suitable for treatment of basic effluents. A possible mechanism for the formation of the nanocomposite and its photocatalytic performance in various pHs has been proposed based on the results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis, characterization and application of pH-sensitive CoFe2O4/reduced graphene oxide (RGO) nanocomposite in a circulated photocatalytic reactor for Reactive Red 141 removal of wastewaters

Loading next page...
 
/lp/springer_journal/synthesis-characterization-and-application-of-ph-sensitive-cofe2o4-13L0r3jzHj
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-017-2860-4
Publisher site
See Article on Publisher Site

Abstract

In the present study, CoFe2O4/reduced graphene oxide nanocomposite (CoFe2O4/RGO) has been synthesized, characterized and applied as a photocatalyst for Reactive Red 141 dye removal from colored wastewaters. In order to control the size and reduction of prepared CoFe2O4/RGO, a combination of co-precipitation and hydrothermal methods were employed. NH3 was used as a pH controlling and complexing agent. The nanocomposite was characterized and its properties were evaluated using FTIR, XRD, VSM, FESEM, TEM, TOC, Zeta potential, PL and UV–Vis spectroscopy. The TEM image shows that a well-separated low layer or a single layer reduced graphene oxide and is decorated during nanocomposite synthesis simultaneously with the synthesis, growth and uniform distribution of nanoparticles of 10 nm size. The measurement of magnetic properties of the synthesized nanocomposite shows that the nanocomposites are easily removable from the aqueous medium by applying a magnetic field. The photocatalytic performance was investigated on the degradation of aqueous Reactive Red 141 dye. Results of Zeta potential analysis confirm that photocatalytic performance is independent of surface charge and is related to the position of the valence band of OH−/OH· couples. Therefore, the photocatalyst could be suitable for treatment of basic effluents. A possible mechanism for the formation of the nanocomposite and its photocatalytic performance in various pHs has been proposed based on the results.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off