Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments

Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments The main objective of this work is to understand the effects caused by particle size, temperature, and sintering time on ceramic formation and development of its surface hardness (Vickers hardness Vk) in order to extend its use in medical applications. The ceramic consists of a biphasic calcium phosphates mixture (beta-tricalcium phosphate and hydroxylapatite) to which we have added zinc oxide, silica, and zirconia in order to improve the biological and mechanical profiles of this ceramic. The ceramization process is made by partial melting, which the melt agent is an amorphous aluminum phosphate added by small quantities to the last mixture. In fact, when the aluminum phosphate is under high temperature, it causes the formation of a melt which facilitates the adhesion of particles during the solidification process. In this study, we adopted an experimental strategy such as central composite design. This plan lets us optimize the mechanical hardness of the ceramic, involving a polynomial form derived from the Taylor–Mac Lorrain equation. The isoresponses curves obtained give us the estimated responses and empirical possibilities for obtaining ceramics with an optimum hardness, which can then be used for each type or intervention place in reconstructive surgery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments

Loading next page...
 
/lp/springer_journal/synthesis-and-optimization-of-a-new-calcium-phosphate-ceramic-using-a-XlXI83mnTz
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0587-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial