Synthesis and microstructure of Co/Ni: MgGa2O4 nanoparticles

Synthesis and microstructure of Co/Ni: MgGa2O4 nanoparticles This report discusses the preparation and microstructure of Co/Ni co-doped MgGa2O4 nanoparticles. The nanoparticles with the size of 20–55 nm were synthesized by sol-gel method. The phase and crystallinity were confirmed by X-ray powder diffraction (XRD) pattern. The particle size was estimated according to XRD data and transmission electron microscopy. The electronic structure was studied using X-ray photoelectron spectroscopy (XPS). The XPS studies showed that Ga3+ ions possess tetrahedral and octahedral sites of spinel structure and the inverse degree (two times of the fraction of tetrahedral Ga3+ ions) has increased with the increase of the doping concentration of Co2+ and Ni2+ ions. For Co/Ni co-doped MgGa2O4, two broad absorption bands of 350~500 and 550~700 nm were observed in the absorption spectra. The broad band at 350~500 nm was assigned to the combination of the absorption of octahedral Co2+ and Ni2+ ions, whereas the absorption band at 550~700 nm is mainly due to tetrahedrally coordinated Co2+ ions and octahedrally coordinated Ni2+ ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Nanoparticle Research Springer Journals

Synthesis and microstructure of Co/Ni: MgGa2O4 nanoparticles

Loading next page...
 
/lp/springer_journal/synthesis-and-microstructure-of-co-ni-mgga2o4-nanoparticles-k8kewSJJ0y
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Materials Science; Nanotechnology; Inorganic Chemistry; Characterization and Evaluation of Materials; Physical Chemistry; Optics, Lasers, Photonics, Optical Devices
ISSN
1388-0764
eISSN
1572-896X
D.O.I.
10.1007/s11051-017-3985-5
Publisher site
See Article on Publisher Site

Abstract

This report discusses the preparation and microstructure of Co/Ni co-doped MgGa2O4 nanoparticles. The nanoparticles with the size of 20–55 nm were synthesized by sol-gel method. The phase and crystallinity were confirmed by X-ray powder diffraction (XRD) pattern. The particle size was estimated according to XRD data and transmission electron microscopy. The electronic structure was studied using X-ray photoelectron spectroscopy (XPS). The XPS studies showed that Ga3+ ions possess tetrahedral and octahedral sites of spinel structure and the inverse degree (two times of the fraction of tetrahedral Ga3+ ions) has increased with the increase of the doping concentration of Co2+ and Ni2+ ions. For Co/Ni co-doped MgGa2O4, two broad absorption bands of 350~500 and 550~700 nm were observed in the absorption spectra. The broad band at 350~500 nm was assigned to the combination of the absorption of octahedral Co2+ and Ni2+ ions, whereas the absorption band at 550~700 nm is mainly due to tetrahedrally coordinated Co2+ ions and octahedrally coordinated Ni2+ ions.

Journal

Journal of Nanoparticle ResearchSpringer Journals

Published: Aug 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off