Synthesis and crystal structure of aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate)

Synthesis and crystal structure of aqua(2.2.2-cryptand)(perchlorato-O)lead(II)... A mixed complex aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate), [Pb(2.2.2-Crypt)(CIO4)(H2O)]+ [Pb(2.2.2-Crypt)(H2O)2]2+ (ClO 4 − )3, is synthesized and studied by X-ray diffraction analysis. The crystals are orthorhombic: space group Pbca, a = 19.118 Å, b = 15.360 Å, c = 39.020 Å, Z = 8. The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.089 for 7712 reflections (CAD-4 automated diffractometer, λMoK α radiation). In each of the two complex cations of the host-guest type in the structure, the Pb2+ cation is coordinated by all the eight heteroatoms (6O + 2N) of the cryptand ligand and by two O atoms of the water molecule and ClO 4 − anion or by two O atoms of two water molecules. In the crystal, alternating complex cations and ClO 4 − anions are linked into infinite chains (along the z axis) through interionic hydrogen bonds O-H···O-Cl. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Coordination Chemistry Springer Journals

Synthesis and crystal structure of aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate)

Loading next page...
 
/lp/springer_journal/synthesis-and-crystal-structure-of-aqua-2-2-2-cryptand-perchlorato-o-uLhFHIjyqq
Publisher
Springer Journals
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
1070-3284
eISSN
1608-3318
D.O.I.
10.1134/S1070328406080033
Publisher site
See Article on Publisher Site

Abstract

A mixed complex aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate), [Pb(2.2.2-Crypt)(CIO4)(H2O)]+ [Pb(2.2.2-Crypt)(H2O)2]2+ (ClO 4 − )3, is synthesized and studied by X-ray diffraction analysis. The crystals are orthorhombic: space group Pbca, a = 19.118 Å, b = 15.360 Å, c = 39.020 Å, Z = 8. The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.089 for 7712 reflections (CAD-4 automated diffractometer, λMoK α radiation). In each of the two complex cations of the host-guest type in the structure, the Pb2+ cation is coordinated by all the eight heteroatoms (6O + 2N) of the cryptand ligand and by two O atoms of the water molecule and ClO 4 − anion or by two O atoms of two water molecules. In the crystal, alternating complex cations and ClO 4 − anions are linked into infinite chains (along the z axis) through interionic hydrogen bonds O-H···O-Cl.

Journal

Russian Journal of Coordination ChemistrySpringer Journals

Published: Aug 6, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off