Synthesis and crystal structure of aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate)

Synthesis and crystal structure of aqua(2.2.2-cryptand)(perchlorato-O)lead(II)... A mixed complex aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate), [Pb(2.2.2-Crypt)(CIO4)(H2O)]+ [Pb(2.2.2-Crypt)(H2O)2]2+ (ClO 4 − )3, is synthesized and studied by X-ray diffraction analysis. The crystals are orthorhombic: space group Pbca, a = 19.118 Å, b = 15.360 Å, c = 39.020 Å, Z = 8. The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.089 for 7712 reflections (CAD-4 automated diffractometer, λMoK α radiation). In each of the two complex cations of the host-guest type in the structure, the Pb2+ cation is coordinated by all the eight heteroatoms (6O + 2N) of the cryptand ligand and by two O atoms of the water molecule and ClO 4 − anion or by two O atoms of two water molecules. In the crystal, alternating complex cations and ClO 4 − anions are linked into infinite chains (along the z axis) through interionic hydrogen bonds O-H···O-Cl. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Coordination Chemistry Springer Journals

Synthesis and crystal structure of aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate)

Loading next page...
 
/lp/springer_journal/synthesis-and-crystal-structure-of-aqua-2-2-2-cryptand-perchlorato-o-uLhFHIjyqq
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
1070-3284
eISSN
1608-3318
D.O.I.
10.1134/S1070328406080033
Publisher site
See Article on Publisher Site

Abstract

A mixed complex aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate), [Pb(2.2.2-Crypt)(CIO4)(H2O)]+ [Pb(2.2.2-Crypt)(H2O)2]2+ (ClO 4 − )3, is synthesized and studied by X-ray diffraction analysis. The crystals are orthorhombic: space group Pbca, a = 19.118 Å, b = 15.360 Å, c = 39.020 Å, Z = 8. The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.089 for 7712 reflections (CAD-4 automated diffractometer, λMoK α radiation). In each of the two complex cations of the host-guest type in the structure, the Pb2+ cation is coordinated by all the eight heteroatoms (6O + 2N) of the cryptand ligand and by two O atoms of the water molecule and ClO 4 − anion or by two O atoms of two water molecules. In the crystal, alternating complex cations and ClO 4 − anions are linked into infinite chains (along the z axis) through interionic hydrogen bonds O-H···O-Cl.

Journal

Russian Journal of Coordination ChemistrySpringer Journals

Published: Aug 6, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off